Q. Yu

Learn More
One of the major challenges in medical domain is the extraction of comprehensible knowledge from medical diagnosis data. In this paper, a two-phase hybrid evolutionary classification technique is proposed to extract classification rules that can be used in clinical practice for better understanding and prevention of unwanted medical events. In the first(More)
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents(More)
The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and(More)
This paper presents a dual-objective evolutionary algorithm (DOEA) for extracting multiple decision rule lists in data mining, which aims at satisfying the classification criteria of high accuracy and ease of user comprehension. Unlike existing approaches, the algorithm incorporates the concept of Pareto dominance to evolve a set of non-dominated decision(More)
In physics and chemistry, specifically in NMR (nuclear magnetic resonance) or MRI (magnetic resonance imaging), or ESR (electron spin resonance) the Bloch equations are a set of macroscopic equations that are used to calculate the nuclear magnetization M = (M x , M y , M z) as a function of time when relaxation times T 1 and T 2 are present. Recently, some(More)
The space and time fractional Bloch-Torrey equation (ST-FBTE) has been used to study anomalous diffusion in the human brain. Numerical methods for solving ST-FBTE in three-dimensions are computationally demanding. In this paper, we propose a computationally effective fractional alternating direction method (FADM) to overcome this problem. We consider(More)