Learn More
Genetic factors contribute to the risk of sudden death from cardiac arrhythmias. Here, positional cloning methods establish KVLQT1 as the chromosome 11-linked LQT1 gene responsible for the most common inherited cardiac arrhythmia. KVLQT1 is strongly expressed in the heart and encodes a protein with structural features of a voltage-gated potassium channel.(More)
In this paper, we report that when the low-level features of targets and distractors are held constant, visual search performance can be strongly influenced by familiarity. In the first condition, a [symbol: see text] was the target amid [symbol: see text]s as distractors, and vice versa. The response time increased steeply as a function of number of(More)
Cbfa2 (AML1) encodes the DNA-binding subunit of a transcription factor in the small family of core-binding factors (CBFs). Cbfa2 is required for the differentiation of all definitive hematopoietic cells, but not for primitive erythropoiesis. Here we show that Cbfa2 is expressed in definitive hematopoietic progenitor cells, and in endothelial cells in sites(More)
Ventricular fibrillation causes more than 300,000 sudden deaths each year in the USA alone. In approximately 5-12% of these cases, there are no demonstrable cardiac or non-cardiac causes to account for the episode, which is therefore classified as idiopathic ventricular fibrillation (IVF). A distinct group of IVF patients has been found to present with a(More)
The Health Utilities Index Mark 2 (HUI:2) is a generic multiattribute, preference-based system for assessing health-related quality of life. Health Utilities Index Mark 2 consists of two components: a seven-attribute health status classification system and a scoring formula. The seven attributes are sensation, mobility, emotion, cognition, self-care, pain,(More)
Long QT syndrome (LQT) is an inherited cardiac disorder that causes syncope, seizures and sudden death from ventricular tachyarrhythmias. We used single-strand conformation polymorphism (SSCP) and DNA sequence analyses to identify mutations in the cardiac sodium channel gene, SCN5A, in affected members of four LQT families. These mutations include two(More)
Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major determinant of the thymic disease specificity of Moloney virus genetically maps to the conserved viral core motif in the Moloney virus enhancer. Point mutations introduced into the core site significantly shifted the disease specificity of the Moloney virus from(More)
The PAR-3/PAR-6/atypical PKC (aPKC) complex is required for axon-dendrite specification of hippocampal neurons. However, the downstream effectors of this complex are not well defined. In this article, we report a role for microtubule affinity-regulating kinase (MARK)/PAR-1 in axon-dendrite specification. Knocking down MARK2 expression with small interfering(More)
The voltage-gated cardiac sodium channel, SCN5A, is responsible for the initial upstroke of the action potential. Mutations in the human SCN5A gene cause susceptibility to cardiac arrhythmias and sudden death in the long QT syndrome (LQT). In this report we characterize the genomic structure of SCN5A. SCN5A consists of 28 exons spanning approximately 80 kb(More)
L6 myoblasts stably transfected with a GLUT4 cDNA harboring an exofacial myc epitope tag (L6-GLUT4myc myoblasts) were used to study the role of protein kinase B alpha (PKBalpha)/Akt1 in the insulin-induced translocation of GLUT4 to the cell surface. Surface GLUT4myc was detected by immunofluorescent labeling of the myc epitope in nonpermeabilized cells.(More)