Q. Huo

Learn More
This paper presents a new feature compensation approach to noisy speech recognition by using high-order vector Taylor series (HOVTS) approximation of an explicit model of environmental distortions. Formulations for maximum likelihood (ML) estimation of noise model parameters and minimum mean-squared error (MMSE) estimation of clean speech are derived.(More)
—In this paper, we present a formulation of minimum classification error linear regression (MCELR) for the adaptation of Gaussian mixture continuous-density hidden Markov model (CDHMM) parameters. Two optimization approaches, namely generalized probabilistic descent (GPD) and Quickprop are studied and compared for the optimization of the MCELR objective(More)
  • 1