Puxiang Lai

Learn More
High-intensity focused ultrasound (HIFU) is a promising modality that is used to noninvasively ablate soft tissue tumors. Nevertheless, real-time treatment monitoring with diagnostic ultrasound still poses a significant challenge since tissue necrosis, in the absence of cavitation or boiling, provides little acoustic contrast with normal tissue. In(More)
Phase distortions due to scattering in random media restrict optical focusing beyond one transport mean free path. However, scattering can be compensated for by applying a correction to the illumination wavefront using spatial light modulators. One method of obtaining the wavefront correction is by iterative determination using an optimization algorithm. In(More)
Focusing light deep inside living tissue has not been achieved despite its promise to play a central role in biomedical imaging, optical manipulation and therapy. To address this challenge, internal-guide-star-based wavefront engineering techniques--for example, time-reversed ultrasonically encoded (TRUE) optical focusing--were developed. The speeds of(More)
Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, ultrasonically guided wavefront shaping technologies have been developed to address this limitation. So far, the focusing resolution of most implementations has been limited by acoustic diffraction. Here, we introduce(More)
An acousto-optic imaging technique suitable for the local and quantitative determination of subsurface optical properties in turbid media is presented. Acousto-optic signals elicited by ultrasound pulses at two different peak pressures in turbid media are detected by using photorefractive-crystal-based interferometry. The ratio of the measured signals, once(More)
Time-reversed ultrasonically encoded (TRUE) optical focusing was recently proposed to deliver light dynamically to a tight region inside a scattering medium. In this letter, we report the first development of a reflection-mode TRUE optical focusing system. A high numerical aperture light guide is used to transmit the diffusely reflected light from a turbid(More)
Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime-typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to increased number of scattering events, which makes(More)
By detecting ultrasonically tagged diffuse light, ultrasound-modulated optical tomography images optical contrast with ultrasonic resolution deep in turbid media, such as biological tissue. However, small detection etendues and weak tagged light submerged in strong untagged background light limit the signal detection sensitivity. In this Letter, we report(More)
Acousto-optic imaging is a hybrid imaging technique that exploits the interaction between light and sound to image optical contrast at depth in optically turbid media with the high spatial resolution of ultrasound. Quantitative measurement of optical properties using this technique is confounded by multiple parameters that influence the detected(More)
In turbid media such as biological tissue, multiple scattering hinders direct light focusing at depths beyond one transport mean free path. As a solution to this problem, time-reversed ultrasonically encoded (TRUE) optical focusing is proposed based on ultrasonic encoding of diffused laser light and optical time reversal. In TRUE focusing, a laser beam of(More)