Learn More
In the past few decades, several models have predicted an energy dependence of the speed of light in the context of quantum gravity. For cosmological sources such as active galaxies, this minuscule effect can add up to measurable photon-energy dependent time lags. In this Letter a search for such time lags during the High Energy Stereoscopic System(More)
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central(More)
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we(More)
The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric(More)
There is an increasing need for high-sensitivity immuno-assays that can be used in point-of-care patient testing of complex media. For example, analytes such as the natri-uretic peptides and recently discovered sepsis markers are found in blood in very low picomolar concentrations (1, 2). Although advances have been made in the use of fluorescent,(More)
Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System(More)
The synchrotron self-Compton (SSC) emission from Gamma-ray Burst (GRB) forward shock can extend to the very-high-energy (VHE; E γ >100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before reaching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based(More)
Accelerated stability tests on lyophilized measles vaccines show two distinct mechanisms of virus inactivation. A rapid initial loss of infectivity occurs only on exposure to temperatures above the ambient temperature. This loss is temperature related and may be attributable to the movement of residual moisture from the virus pellet into the void space of(More)
Mycobacterial lipoarabinomannan (LAM) is an important, immunologically active glycan found in the cell wall of mycobacteria, including the human pathogen Mycobacterium tuberculosis. At the core of LAM is a mannan domain comprised of alpha-(1-->6)-linked-mannopyranose (Manp) residues. Previously, we and others have demonstrated that(More)
MosA is an enzyme from Sinorhizobium meliloti L5-30, a beneficial soil bacterium that forms a symbiotic relationship with leguminous plants. MosA was proposed to catalyze the conversion of scyllo-inosamine to 3-O-methyl-scyllo-inosamine (compounds known as rhizopines), despite the MosA sequence showing a strong resemblance to dihydrodipicolinate synthase(More)