Learn More
Sugars, the major energy source for many organisms, must be transported across biological membranes. Glucose is the most abundant sugar in human plasma and in many other biological systems and has been the primary focus of sugar transporter studies in eukaryotes. We have previously cloned and characterized a family of glucose transporter genes from the(More)
Current therapies for human African trypanosomiasis (HAT) are unsatisfactory and under threat from emerging drug resistance linked to the loss of transporters, e.g., the P2 aminopurine transporter (TbAT1). Here we compare the uptake and trypanocidal properties of furamidine (DB75), recently evaluated in clinical trials against stage 1 (haemolymphatic) HAT,(More)
Human chromosome 3p cytogenetic abnormalities and loss of heterozygosity have been observed at high frequency in the nonpapillary form of sporadic renal cell carcinoma (RCC). The von Hippel-Lindau (VHL) gene has been identified as a tumor suppressor gene for RCC at 3p25, and functional studies as well as molecular genetic and cytogenetic analyses have(More)
Human African trypanosomiasis, endemic to sub-Saharan Africa, is invariably fatal if untreated. Its causative agent is the protozoan parasite Trypanosoma brucei. Eflornithine is used as a first line treatment for human African trypanosomiasis, but there is a risk that resistance could thwart its use, even when used in combination therapy with nifurtimox.(More)
The P2 aminopurine transporter, encoded by TbAT1 in African trypanosomes in the Trypanosoma brucei group, carries melaminophenyl arsenical and diamidine drugs into these parasites. Loss of this transporter contributes to drug resistance. We identified the genomic location of TbAT1 to be in the subtelomeric region of chromosome 5 and determined the status of(More)
Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are(More)
The first convenient synthesis of enantiomerically pure (αS,5S)-α-amino-3-bromo-4,5-dihydroisoxazol-5-yl acetic acid (3-bromoacivicin) is described. We demonstrate that 3-bromoacivicin is a CTP synthetase inhibitor three times as potent as its 3-chloro analogue, the natural antibiotic acivicin. Because CTP synthetase was suggested to be a potential drug(More)
Prostate cancer is the second leading cause of male cancer deaths in the United States. Yet, despite a large international effort, little is known about the molecular mechanisms that underlie this devastating disease. Prostate secretory epithelial cells and androgen-dependent prostate carcinomas undergo apoptosis in response to androgen deprivation and,(More)
A series of unsaturated Mannich bases possessing two electrophilic sites was recently identified as irreversible inhibitors of trypanothione reductase from Trypanosoma cruzi. New derivatives were synthesized by modifying the substitution pattern on the aromatic ring and by incorporating the melamine motif of melarsoprol. Their affinity to P2 transporter and(More)