Learn More
Data streams characterize the high speed and large volume input of a new class of applications such as network monitoring, web content analysis and sensor networks. Among these applications, network monitoring may be the most compelling one—the backbone of a large internet service provider can generate 1 petabyte of data per day. For many network monitoring(More)
In a camera network, one fundamental research issue is how well the target field is monitored, which is referred as the coverage problem. A good coverage method can reduce the cost and allow the monitor system to scale. The existing work on coverage problem use the k-coverage as its model and coverage percentage as its optimal metric. With this model and(More)
A new architecture for generating pure azimuthally and radially polarized beams is presented. It involves coherent polarization beam combination of two orthogonally polarized LP(11) fiber modes. Experimental results reveal that high purely polarized (polarization purity of 95% or better) azimuthal and radial beams can be generated.
By using the rms beam width as the parameter to characterize the spreading property, the average spreading of Gaussian beam array propagates in non-Kolmogorov turbulence is studied. Numerical examples reveal that the beam width depends on the exponent value alpha, and the beam width in non-Kolmogorov turbulence is different from that in Kolmogorov(More)
Tacrolimus and cyclosporine are the major immunosuppressants for renal transplantation. Several studies have compared these 2 drugs, but the outcomes were not consistent. The aim of this study was to evaluate the efficacy, safety, and pharmacoeconomics of cyclosporine and tacrolimus in the treatment of renal transplantation and provide evidence for the(More)
We demonstrate a high power all-fiber single frequency Tm-doped fiber amplifier. The maximum output power reached 102 W and the central wavelength was 1.97 μm. The single frequency laser signal from a seed laser was amplified based on a monolithic master oscillator power amplifier (MOPA) configuration. The slope efficiency was about 50% against the absorbed(More)
A new approach for the complete modal decomposition of the optical fields emerging from the multimode fiber is presented in this paper. Based on the stochastic parallel gradient descent algorithm, mode coefficients for all the bound modes in the multimode fiber can be exactly calculated by utilizing one intensity profile of the beam. Numerical simulation(More)
We report the result of achieving a random fiber laser (RFL) with record 200-W-level power output. The highest output power is realized by a simple 120 m long cavity at a working wavelength of 1173 nm while pumping at 1120 nm. The maximum observed optical-to-optical efficiency reaches ∼89%, which is believed to be the highest value ever reported for RFLs.(More)
Multitone radiation is a promising technique to mitigate stimulated Brillouin scattering effects in narrow-linewidth fiber amplifiers. We demonstrate coherent beam combination of three two-tone fiber amplifiers using a stochastic parallel gradient descent (SPGD) algorithm. Phase control on the fiber amplifiers are performed by running the SPGD algorithm on(More)
Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for(More)