Prosper Benhaim

Learn More
Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into(More)
Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal(More)
Our laboratory has recently characterized a population of cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multi-lineage potential similar to bone-marrow-derived mesenchymal stem cells (MSCs). This study is the first comparison of PLA cells and MSCs isolated from the same patient. No significant differences were observed for(More)
Multipotential processed lipoaspirate (PLA) cells extracted from five human infrapatellar fat pads and embedded into fibrin glue nodules, were induced into the chondrogenic phenotype using chondrogenic media. The remaining cells were placed in osteogenic media and were transfected with an adenovirus carrying the cDNA for bone morphogenetic protein-2(More)
Human processed lipoaspirate (PLA) cells are multipotent stem cells, capable of differentiating into multiple mesenchymal lineages (bone, cartilage, fat, and muscle). To date, differentiation to nonmesodermal fates has not been reported. This study demonstrates that PLA cells can be induced to differentiate into early neural progenitors, which are of an(More)
PURPOSE We have isolated pluripotent mesenchymal progenitor cells in large numbers from liposuction aspirates (processed lipoaspirate cells or PLAs). This study examines the osteogenic potential of PLAs and bone marrow aspirate cells (BMAs), when exposed to either recombinant human bone morphogenetic protein (BMP)-2 (rh-BMP-2) or adenovirus containing BMP-2(More)
BACKGROUND Progenitor cells capable of induction into multiple mesenchymal lineages have been isolated from human liposuction aspirates. These cells, named processed lipoaspirate cells, have previously shown in vitro osteogenic capacity. The purpose of this study was to examine the in vivo bone induction capacity of bone morphogenetic protein-2(More)
The FDA has approved the clinical use of recombinant bone morphogenetic proteins (BMPs). However, the use of recombinant BMPs in humans has required large doses of the proteins to be effective, which suggests that the delivery method of bone morphogenetic proteins needs to be optimized. Gene therapy is an alternative method to deliver such recombinant(More)
Human adipose tissue is an ideal source of autologous cells that is both plentiful and easily obtainable in large quantities through the simple surgical procedure of liposuction. The stromal vascular fraction of adipose tissue contains a stem cell population, adipose-derived stem cells (ASCs), capable of adipogenic, osteogenic, myogenic and chondrogenic(More)
Although recent studies have proposed that human adipose-derived stem cells (ASCs), together with BMP2, can heal critical-sized bony defects, a companion study in this issue suggests that ASCs may not respond to BMP2 in vivo. To examine why this may be occurring. ASCs were treated with BMP2 and the cells' in vitro osteogenic capacity assessed along with the(More)