Learn More
Clustered damage in DNA includes two or more closely spaced oxidized bases, strand breaks or abasic sites that are induced by high- or low-linear-energy-transfer (LET) radiation, and these have been found to be repair-resistant and potentially mutagenic. In the present study we found that abasic clustered damages are also induced in primary human fibroblast(More)
Non-targeted photosensitizers lack selectivity that undermines the potential use of photodynamic therapy (PDT). Herein, we report the DNA mediated assembly of a ZnSe/ZnS quantum dot (QD)-photosensitizer (PS)-Mucin 1(MUC1) aptamer conjugate for targeting the MUC1 cancer biomarker and simultaneous generation of reactive oxygen species (ROS). A(More)
The stimulatory effect of the aqueous extract of G. lucidum, a basidiomycetes class fungus in the APE1-enzyme-mediated processing of solitary and bistranded clustered abasic sites DNA damages is presented. Abasic sites are considered the most common type of DNA damage lesions. Our study shows enhanced activity of APE1 in the processing of abasic sites in(More)
The efficiency of the apurinic/apyrimidinic endonuclease (APE1) DNA repair enzyme in the processing of abasic site DNA damage lesions at precise location in DNA oligomer duplexes that are adsorbed on clay surfaces was evaluated. Three different forms of clay namely montmorillonite, quaternary ammonium salt modified montmorillonite and its boiled counterpart(More)
Long-distance radical cation transport was studied in DNA condensates. Linearized pUC19 plasmid was ligated to an oligomer containing a covalently linked anthraquinone group and six regularly spaced GG steps, which serve as traps for the migrating radical cation. Treatment of the linear, ligated plasmid with spermidine results in formation of condensates(More)
The processing of abasic site DNA damage lesions in extracellular DNA in the presence of engineered carbon nanomaterials (CNMs) is demonstrated. The efficacy of the apurinic-apyrimidinic endonuclease 1 (APE1) in the cleavage of abasic site lesions in the presence of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) and graphene oxide (GO) are(More)
Photodynamic therapy (PDT) involves generation of reactive oxygen species (ROS) by the irradiation of a photosensitizer. Controlled and targeted release of ROS by a photosensitizer is crucial in PDT. For achieving controlled generation of ROS, a ZnSe/ZnS quantum dot (QD) donor and protoporphyrin IX (Pp IX) acceptor based fluorescence resonance energy(More)
Polyethylene glycol (PEG) has been found to be an inexpensive, non-toxic and useful medium for the one pot synthesis of highly functionalized dihydropyridines using multicomponent reactions (MCRs) at room temperature under catalyst free conditions. The notable features of this protocol are: mild reaction condition, applicability to wide range of substrates,(More)
A facile and efficient synthesis of a new series of triptycene-based tripods is being reported. Using 2,6,14- or 2,7,14-triaminotriptycenes as synthons, the corresponding triazidotriptycenes were prepared in high yield. Additionally, we report the transformation of 2,6,14- or 2,7,14-triaminotriptycenes to the corresponding ethynyl-substituted triptycenes(More)