Priyamvada Rajasethupathy

Learn More
Memory storage and memory-related synaptic plasticity rely on precise spatiotemporal regulation of gene expression. To explore the role of small regulatory RNAs in learning-related synaptic plasticity, we carried out massive parallel sequencing to profile the small RNAs of Aplysia californica. We identified 170 distinct miRNAs, 13 of which were novel and(More)
Small RNA-mediated gene regulation during development causes long-lasting changes in cellular phenotypes. To determine whether small RNAs of the adult brain can regulate memory storage, a process that requires stable and long-lasting changes in the functional state of neurons, we generated small RNA libraries from the Aplysia CNS. In these libraries, we(More)
Top-down prefrontal cortex inputs to the hippocampus have been hypothesized to be important in memory consolidation, retrieval, and the pathophysiology of major psychiatric diseases; however, no such direct projections have been identified and functionally described. Here we report the discovery of a monosynaptic prefrontal cortex (predominantly anterior(More)
Systems modeling is emerging as a valuable tool in therapeutics. This is seen by the increasing use of clinically relevant computational models and a rise in systems biology companies working with the pharmaceutical industry. Systems models have helped understand the effects of pharmacological intervention at receptor, intracellular and intercellular(More)
In recent years, a greater understanding has emerged of the role epigenetic mechanisms play in the brain, not only during development, but also in mature neurons involved in long-term memory. The identification of spatially and temporally tuned epigenetic modification of genetic loci during memory storage has revealed the remarkably input-responsive,(More)
In recently developed approaches for high-resolution imaging within intact tissue, molecular characterization over large volumes has been largely restricted to labeling of proteins. But volumetric nucleic acid labeling may represent a far greater scientific and clinical opportunity, enabling detection of not only diverse coding RNA variants but also(More)
Here we describe a strategy designed to identify RNAs that are actively transported to synapses during learning. Our approach is based on the characterization of RNA transport complexes carried by molecular motor kinesin. Using this strategy in Aplysia, we have identified 5,657 unique sequences consisting of both coding and noncoding RNAs from the CNS.(More)
The gamma-aminobutyric acid (GABA(A)) receptor belongs to a superfamily of membrane-bound proteins that regulate signal transmission between cells in the nervous system. It is the target of convulsants such as picrotoxin and is mutated in some forms of epilepsy, a disease affecting approximately 50 million people worldwide. In picrotoxin inhibition and in(More)
The maintenance phase of memory-related long-term facilitation (LTF) of synapses between sensory and motor neurons of the gill-withdrawal reflex of Aplysia depends on a serotonin (5-HT)-triggered presynaptic upregulation of CPEB, a functional prion that regulates local protein synthesis at the synapse. The mechanisms whereby serotonin regulates CPEB levels(More)