Pritam Kumar Jana

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Large-area self-assembled structures of a nucleobase adenine derivative were successfully realized through vacuum deposition. STM images reveal two types of structures, which could be regulated by substrate temperature and the evaporation rate, indicating the relevance of kinetic effects. The results are supported by computer simulations.
Cyclically loaded disordered particle systems, such as granular packings and amorphous media, display a non-equilibrium phase transition towards irreversibility. Here, we investigate numerically the cyclic deformation of a colloidal polycrystal with impurities and reveal a transition to irreversible behavior driven by the displacement of dislocations. At(More)
Receptor mediated endocytosis is an ubiquitous process through which cells internalize biological or synthetic nanoscale objects, including viruses, unicellular parasites, and nanomedical vectors for drug or gene delivery. In passive endocytosis the cell plasma membrane wraps around the “invader” particle driven by ligand-receptor complexation. By means of(More)
We describe experiments and computer simulations of molecular deposition on a substrate in which the molecules (substituted adenine derivatives) self-assemble into ordered structures. The resulting structures depend strongly on the deposition rate (flux). In particular, there are two competing surface morphologies (α and β), which differ by their topology(More)
The self-organization of lipophilic chain molecules on surfaces in vacuum deposition experiments has been recently studied by Monte Carlo simulations of a coarse grained microscopic model system. Surprisingly, the final potential energy depends in a non-monotonous way on the chosen flux and the surface temperature. Here we introduce a schematic model which(More)
Model chains are studied via Monte Carlo simulations which are deposited with a fixed flux on a substrate. They may represent, e.g., stiff lipophilic chains with an head group and tail groups mimicking the alkyl chain. After some subsequent fixed simulation time we determine the final energy as a function of flux and temperature. Surprisingly, in some range(More)
  • 1