Learn More
Here we provide a genome-wide, high-resolution map of the phylogenetic origin of the genome of most extant laboratory mouse inbred strains. Our analysis is based on the genotypes of wild-caught mice from three subspecies of Mus musculus. We show that classical laboratory strains are derived from a few fancy mice with limited haplotype diversity. Their(More)
The Y chromosome-linked sex determining locus (Sry) responsible for testis determination in mammals contains a DNA-binding motif (HMG box) that is conserved across species of marsupial and placental mammals (infraclasses Metatheria and Eutheria, respectively). But little to no sequence similarity is observed in flanking sequences between these two(More)
Several species in the rodent genus Mus are used as model research organisms, but comparative studies of these mice have been hampered by the lack of a well-supported phylogeny. We used DNA sequences from six genes representing paternally, maternally, and biparentally inherited regions of the genome to infer phylogenetic relationships among 10 species of(More)
We have identified Math5, a mouse basic helix-loop-helix (bHLH) gene that is closely related to Drosophila atonal and Xenopus Xath5 and is largely restricted to the developing eye. Math5 retinal expression precedes differentiation of the first neurons and persists within progenitor cells until after birth. To position Math5 in a hierarchy of retinal(More)
We compared the patterns of movement of sex chromosomal and autosomal loci along a 160 km transect across a zone of hybridization between M. domesticus and M. musculus in southern Germany and western Austria using seven genetic markers. These included one Y-specific DNA sequence (YB10), two X-specific loci (DXWas68 and DXWas31), and four autosomal isozyme(More)
Hybrid zones between closely related species or subspecies provide useful settings for studying the genetic architecture of speciation. Using markers distributed throughout the mouse genome, we use a hybrid zone between two recently diverged species of house mice (Mus musculus and Mus domesticus) as a natural mapping experiment to identify genomic regions(More)
We examine variation among species of Mus in four genes involved in reproduction and the immune response for evidence of positive selection: the sperm recognition gene Zp-3, the testis-determining locus Sry, the testicular cell surface matrix protein Tcp-1, and the immune system protein beta(2) m. We use likelihood ratio tests in the context of a(More)
Studies of the genetics of hybrid zones can provide insight into the genomic architecture of species boundaries. By examining patterns of introgression of multiple loci across a hybrid zone, it may be possible to identify regions of the genome that have experienced selection. Here, we present a comparison of introgression in two replicate transects through(More)
With the exception of a small region, heteromorphic sex chromosomes of mammals do not undergo recombination in male meiosis. As a result, the majority of the Y chromosome is clonally transmitted through paternal lineages. Numerous phenomena, including the Hill-Robertson effect, Muller's ratchet, genetic hitch-hiking, and male-driven molecular evolution, are(More)
A 305 base pair DNA sequence isolated from the Y chromosome of the inbred mouse strain C57BL/10 was used to investigate the pattern and tempo of evolution of Y chromosome DNA sequences for five species in the subgenus Mus, including Mus spretus, Mus hortulanus, Mus abbotti, Mus musculus and Mus domesticus. Variation in hybridization patterns between species(More)