Learn More
Only 7 % of the Atlantic Forest Biodiversity Hotspot is currently protected, though it holds 18 % of all amphibian species in South America. How effective would the Atlantic Forest network of protected areas (PAs) be in a changing climate? Are there some intrinsic features of PAs that drive species loss or gain inside them? We addressed these questions by(More)
Despite wide evidence of a quickly changing world, systematic conservation planning analyses are usually static assuming that the biodiversity being preserved in sites do not change through time. Here we generated a comprehensive ensemble forecasting experiment for 444 amphibian species inhabiting the Atlantic Forest Biodiversity Hotspot. Models were based(More)
A wide range of evidences indicate climate change as one the greatest threats to biodiversity in the 21st century. The impacts of these changes, which may have already resulted in several recent species extinction, are species-specific and produce shifts in species phenology, ecological interactions, and geographical distributions. Here we used cutting-edge(More)
Spatial conservation prioritization should seek to anticipate climate change impacts on biodiversity and to mitigate these impacts through the development of dynamic conservation plans. Here, we defined spatial priorities for the conservation of amphibians inhabiting the Atlantic Forest Biodiversity Hotspot that overcome the likely impacts of climate change(More)
Climate change leads to species' range shifts, which may end up reducing the effectiveness of protected areas. These deleterious changes in biodiversity may become amplified if they include functionally important species, such as herbivores or pollinators. We evaluated how effective protected areas in the Brazilian Atlantic Forest are in maintaining the(More)
  • 1