Prescott Deininger

Learn More
Long interspersed element-1 elements compose on average one-fifth of mammalian genomes. The expression and retrotransposition of L1 is restricted by a number of cellular mechanisms in order to limit their damage in both germ-line and somatic cells. L1 transcription is largely suppressed in most tissues, but L1 mRNA and/or proteins are still detectable in(More)
LINE-1 expression damages host DNA via insertions and endonuclease-dependent DNA double-strand breaks (DSBs) that are highly toxic and mutagenic. The predominant tissue of LINE-1 expression has been considered to be the germ line. We show that both full-length and processed L1 transcripts are widespread in human somatic tissues and transformed cells, with(More)
In metazoans, miRNAs regulate gene expression primarily through binding to target sites in the 3' UTRs (untranslated regions) of messenger RNAs (mRNAs). Cis-acting variants within, or close to, a gene are crucial in explaining the variability of gene expression measures. Single nucleotide polymorphisms (SNPs) in the 3' UTRs of genes can affect the(More)
BACKGROUND Alu elements are the most abundant retrotransposable elements comprising ~11% of the human genome. Many studies have highlighted the role that Alu elements have in genetic instability and how their contribution to the assortment of mutagenic events can lead to cancer. As of yet, little has been done to quantitatively assess the association(More)
BACKGROUND Cells adapt to various chronic toxic exposures in a multitude of ways to minimize further damage and maximize their growth potential. Expression of L1 elements in the human genome can be greatly deleterious to cells, generating numerous double strand breaks (DSBs). Cells have been reported to respond to chronic DSBs by altering the repair of(More)
Insertion site characterisation of Alu elements is an important problem in primate-specific bioinformatics research. Key characteristics of this challenging problem include: data are not in the pre-defined feature vectors for predictive model construction; without any prior knowledge, can we discover the general patterns that could exist and also make(More)
It is widely accepted that aging is characterized by a gradual decline in the efficiency and accuracy of biological processes, leading to deterioration of physiological functions and development of age-associated diseases. Age-dependent accumulation of genomic instability and development of metabolic syndrome are well-recognized components of the aging(More)
The passing of Dr. Jerzy Jurka (Jurek to his friends) represents a heartfelt loss to his many friends in the Mobile DNA field. The whole field of Mobile DNA has lost the scientific efforts of a brilliant colleague and for many of us an esteemed friend. The accompanying biography provides an outstanding outline of his life and career, so I will focus(More)
The exonization of transposable elements (TEs) has proven to be a significant mechanism for the creation of novel exons. Existing knowledge of the retention patterns of TE exons in mRNAs were mainly established by the analysis of Expressed Sequence Tag (EST) data and microarray data. This study seeks to validate and extend previous studies on the expression(More)