Learn More
Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing approximately 80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2), two unrelated enzymes(More)
Fatty acid desaturases (FADs) play a prominent role in plant lipid metabolism and are located in various subcellular compartments, including the endoplasmic reticulum (ER). To investigate the biogenesis of ER-localized membrane-bound FADs, we characterized the mechanisms responsible for insertion of Arabidopsis FAD2 and Brassica FAD3 into ER membranes and(More)
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps(More)
BACKGROUND Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA(More)
The de novo biosynthesis of the triphosphopyridine NADP is catalyzed solely by the ubiquitous NAD kinase family. The Arabidopsis (Arabidopsis thaliana) genome contains two genes encoding NAD+ kinases (NADKs), annotated as NADK1, NADK2, and one gene encoding a NADH kinase, NADK3, the latter isoform preferring NADH as a substrate. Here, we examined the(More)
Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis g-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate Abstract g-Aminobutyrate transaminase (GABA-T) catalyses the breakdown of GABA to succinic semialdehyde. In this report, the previously identified Arabidopsis thaliana (L.)(More)
Gamma-aminobutyrate transaminase (GABA-T) catalyses the breakdown of GABA to succinic semialdehyde. In this report, the previously identified Arabidopsis thaliana (L.) Heyhn GABA-T (AtGABA-T) was characterized in more detail. Full-length AtGABA-T contains an N-terminal 36 amino acid long targeting pre-sequence (36 amino acids) that is both sufficient and(More)
Enzymes that reduce the aldehyde chemical grouping (i.e. H-C=O) to its corresponding alcohol could be crucial in maintaining plant health. Recently, recombinant expression of a cytosolic enzyme from Arabidopsis thaliana (L.) Heynh (designated as glyoxylate reductase 1 or AtGR1) revealed that it effectively catalyses the in vitro reduction of both glyoxylate(More)
Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing ;80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2), two unrelated enzymes that catalyze(More)
  • 1