Pravin Vaity

  • Citations Per Year
Learn More
We present an optical fiber supporting 36 information bearing orbital angular momentum (OAM) states spanning 9 OAM orders. We introduce design techniques to maximize the number of OAM modes supported in the fiber; while avoiding LP mode excitation. We fabricate such a fiber with an air core and an annular index profile using the MCVD process. We introduce a(More)
We introduce an asymmetry in the core of a high charge optical vortex by using an appropriate computer generated hologram. The splitting of a high charge optical vortex core into unit charge vortices has been found to depend on the extent of the asymmetry. For a second order vortex, the trajectories of the split unit charged vortices and their separation(More)
A novel type of few-mode fiber, characterized by an inverse-parabolic graded-index profile, is proposed for the robust transmission of cylindrical vector modes as well as modes carrying quantized orbital angular momentum (OAM). Large effective index separations between vector modes (>2.1 × 10(-4)) are numerically calculated and experimentally confirmed in(More)
We observe phase singularities in the superposed field of two Gaussian beams. It is seen that the formation of these singularities depends on the tilt between two Gaussian beams and the separation of their beam axes. By reversing the angle or the position of the beams, one can change the sign of the vortex. We have shown the formation of single as well as(More)
The reflectogram of a fiber grating is used to characterize vector modes of an optical fiber supporting orbital angular momentum states. All modes, with a minimal effective index separation around 10(-4), are simultaneously measured. OAM states are reflected by the FBG, along with a charge inversion, at the center wavelength of the Bragg reflection peak of(More)
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of(More)
We make optical vortices of different topological charge and diffract them through a quadratic phase mask using the same spatial light modulator. This phase mask shows the diffraction in which the positive diffracted order has different dynamics than the negative diffracted order. The diffraction pattern and its orientation depend on the charge of the(More)
We study, experimentally as well as theoretically, the spatial coherence function and the Wigner distribution function for one-dimensional projections of optical vortices of different orders. The information entropy derived from the spatial coherence functions has been used to quantify the information content of the vortices and compared with those obtained(More)
Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that(More)
We generate experimentally optical ring lattice structures which are the superposition of two coaxial Laguerre-Gaussian modes with common waist position and waist parameter. Although these structures are not diffraction-free, they show self-healing property. This self-reconstruction of the ring lattice can be understood by looking into the transverse energy(More)