Pravin A. Nair

Learn More
Chlorella virus DNA ligase, the smallest eukaryotic ligase known, has pluripotent biological activity and an intrinsic nick-sensing function, despite having none of the accessory domains found in cellular ligases. A 2.3-Å crystal structure of the Chlorella virus ligase-AMP intermediate bound to duplex DNA containing a 3′-OH–5′-PO4 nick reveals a new mode of(More)
NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick,(More)
A temperature sensitive mutation in the cell division protein FtsZ was used in combination with transcriptional analysis to identify biomarkers for inhibition of septum formation. Crystallography and modeling revealed that the glycine for aspartate substitution at amino acid 210 was located in helix 8 of the protein, adjacent to the T7 synergy loop. To(More)
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from ten different phyla. To gain insight to the mechanism and evolution of this repair system, we determined the crystal structures of the ligase domain of Clostridium thermocellum Pnkp in three functional states along the reaction pathway: apoenzyme,(More)
NAD(+)-dependent DNA ligases (LigAs) are ubiquitous in bacteria and essential for growth. LigA enzymes have a modular structure in which a central catalytic core composed of nucleotidyltransferase and oligonucleotide-binding (OB) domains is linked via a tetracysteine zinc finger to distal helix-hairpin-helix (HhH) and BRCT (BRCA1-like C-terminal) domains.(More)
LigD 30-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 30-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis–à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the(More)
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3'-OH/5'-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic(More)
The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3'-phosphomonoesterase and 3'-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using(More)
DNA ligase D (LigD), consisting of polymerase, ligase and phosphoesterase domains, is the essential catalyst of the bacterial non-homologous end-joining pathway of DNA double-strand break repair. The phosphoesterase (PE) module performs manganese-dependent 3'-phosphomonoesterase and 3'-ribonucleoside resection reactions that heal broken ends in preparation(More)
Chlorella virus DNA ligase (ChVLig) is a minimal (298-amino acid) pluripotent ATP-dependent ligase composed of three structural modules--a nucleotidyltransferase domain, an OB domain, and a beta-hairpin latch--that forms a circumferential clamp around nicked DNA. ChVLig provides an instructive model to understand the chemical and conformational steps of(More)