Praveen Kumar Allu

  • Citations Per Year
Learn More
Maintaining centromere identity relies upon the persistence of the epigenetic mark provided by the histone H3 variant, centromere protein A (CENP-A), but the molecular mechanisms that underlie its remarkable stability remain unclear. Here, we define the contributions of each of the three candidate CENP-A nucleosome-binding domains (two on CENP-C and one on(More)
Peptide methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in protein(s). Although these reductases have been implicated in several human diseases, there is a dearth of information on the identity of their physiological substrates. By using Saccharomyces cerevisiae as a model, we show that of the two methionine sulfoxide(More)
Despite the growing evidence of the role of oxidative stress in disease, its molecular mechanism of action remains poorly understood. The yeast Saccharomyces cerevisiae provides a valuable model system in which to elucidate the effects of oxidative stress on mitochondria in higher eukaryotes. Dimeric yeast Mge1, the cochaperone of heat shock protein 70(More)
Mge1, a yeast homologue of Escherichia coli GrpE, is an evolutionarily conserved homodimeric nucleotide exchange factor of mitochondrial Hsp70. Temperature-dependent reversible structural alteration from a dimeric to a monomeric form is critical for Mge1 to act as a thermosensor. However, very limited information about the structural component or amino acid(More)
  • 1