Praveen Kishore Sahu

Learn More
Release of extracellular DNA (eDNA) was observed during in vitro growth of a clinical strain of Acinetobacter baumannii. Membrane vesicles (MV) of varying diameter (20-200 nm) containing DNA were found to be released by transmission electron microscopy (TEM) and atomic force microscopy (AFM). An assessment of the characteristics of the eDNA with respect to(More)
Biofilm formation in Acinetobacter baumannii is a common cause of nosocomial infections in humans. Clinical devices and abiotic surfaces are important sites of colonization leading to formation of biofilms. Such infections are often resistant to multiple antibiotic therapies, and hence there is need for an effective mode of control. Herein, we describe the(More)
Relative quantification of algC gene expression was evaluated in the multidrug resistant strain Acinetobacter baumannii AIIMS 7 biofilm (3 to 96 h, on polystyrene surface) compared to the planktonic counterparts. Comparison revealed differential algC expression pattern with maximum 81.59-fold increase in biofilm cells versus 3.24-fold in planktonic cells (P(More)
A major facilitator superfamily (MFS) transporter-like open reading frame (ORF) of 453 bp was identified in a pathogenic strain Acinetobacter baumannii AIIMS 7, and its association with adherence and biofilm formation was investigated. Reverse transcription PCR (RT-PCR) showed differential expression in surface-attached biofilm cells than nonadherent cells.(More)
BACKGROUND & OBJECTIVES Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus(More)
Acinetobacter baumannii infections are difficult to treat due to biofilm formation. The literature shows paucity of data on A. baumannii bacteriophages and their application in biofilm control. In this report, we have isolated a new lytic bacteriophage, AB7-IBB1, infecting A. baumannii. Transmission electron microscopy revealed its resemblance to members of(More)
  • 1