Learn More
The intricate molecular mechanisms that regulate ESC pluripotency are incompletely understood. Prior research indicated that activation of the Janus kinase-signal transducer and activator of transcription (STAT3) pathway or inhibition of extracellular signal-regulated kinase/glycogen synthase kinase 3 (ERK/GSK3) signaling maintains mouse ESC (mESC)(More)
In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used(More)
The mechanism of active transport of transfer RNA (tRNA) across membranes is largely unknown. Factors mediating the import of tRNA into the kinetoplast mitochondrion of the protozoon Leishmania tropica are organized into a multiprotein RNA import complex (RIC) at the inner membrane. Here, we present the complete characterization of the identities and(More)
In kinetoplastid protozoa, import of cytosolic tRNAs into mitochondria occurs through tRNAs interacting with membrane-bound proteins, the identities of which are unknown. The inner membrane RNA import complex of Leishmania tropica contains multiple proteins and is active for import in vitro. RIC1, the largest subunit of this complex, is structurally(More)
During early mammalian development, genesis of the first two cell lineages, inner cell mass (ICM) and trophectoderm (TE), is dependent upon functions of key transcription factors that are expressed in a regulated and spatially restricted fashion. In this study, we demonstrate that during early mouse development, mRNA expression of transcription factor GATA3(More)
Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis are key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic(More)
Excavations at the 17th century site of Ferryland during the past 2 summers have revealed thousands of artifacts and the remains of several structures. Of particular interest here was the discovery of the remains of a privy and associated stable. Examination of privy contents revealed the presence of eggs of 4 parasites: Ascaris, Trichuris, Taenia, and(More)
Transport of tRNAs across the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania requires interactions with specific binding proteins (receptors) in a multi-subunit complex. The allosteric model of import regulation proposes cooperative and antagonistic interactions between two or more receptors with binding specificities for distinct(More)
Angiogenesis is critically dependent on endothelial cell-specific transcriptional mechanisms. However, the molecular processes that regulate chromatin domains and thereby dictate transcription of key endothelial genes are poorly understood. Here, we report that, in endothelial cells, angiogenic signal-mediated transcriptional induction of Vegfr1 (vascular(More)
Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC(More)