Prashanth Krishnamurthy

Learn More
—In this paper, we propose a dynamic high-gain scaling technique and solutions to coupled Lyapunov equations leading to results on state-feedback, output-feedback, and input-to-state stable (ISS) appended dynamics with nonzero gains from all states and input. The observer and controller designs have a dual architecture and utilize a single dynamic scaling.(More)
—We propose a global high-gain scaling-based state-feedback controller for a general class of nonlinear systems containing uncertain functions of all the states and the control input as long as polynomial bounds on ratios of some uncertain system terms are available. The design is based on a high gain scaling involving appropriate powers of a high gain(More)
— In this paper, we propose a novel path-planning and obstacle avoidance algorithm GODZILA for navigation in unknown environments. No prior knowledge of the environment is required. The path-planning algorithm follows a purely local approach using only the current range sensor measurements at each sampling instant and requiring only a small number of stored(More)