Prasanna Velagapudi

Learn More
The use of distributed POMDPs for cooperative teams has been severely limited by the incredibly large joint policyspace that results from combining the policy-spaces of the individual agents. However, much of the computational cost of exploring the entire joint policy space can be avoided by observing that in many domains important interactions between(More)
The present study investigates the effect of the number of controlled robots on performance of an urban search and rescue (USAR) task using a realistic simulation. Participants controlled either 4, 8, or 12 robots. In the fulltask control condition participants both dictated the robots' paths and controlled their cameras to search for victims. In the(More)
In this paper, we address the problem of distributed path planning for large teams of hundreds of robots in constrained environments. We introduce two distributed prioritized planning algorithms: an efficient, complete method which is shown to converge to the centralized prioritized planner solution, and a sparse method in which robots discover collisions(More)
Camera guided teleoperation has long been the preferred mode for controlling remote robots, with other modes such as asynchronous control only used when unavoidable. In this experiment we evaluate the usefulness of asynchronous operation for a multirobot search task. Because controlling multiple robots places additional demands on the operator, removing the(More)
In this paper, we outline a low cost multi-robot autonomous platform for a broad set of applications including water quality monitoring, flood disaster mitigation and depth buoy verification. By working cooperatively, fleets of vessels can cover large areas that would otherwise be impractical, time consuming and prohibitively expensive to traverse by a(More)
The present study investigates the effect of the number of controlled robots on performance of an urban search and rescue (USAR) task using a realistic simulation. Task performance increased in going from four to eight controlled robots but deteriorated in moving from eight to twelve. Workload increased monotonically with number of robots. Performance per(More)
The present study addresses the interaction between automation and organization of human teams in controlling large robot teams performing an Urban Search and Rescue (USAR) task. We identify three subtasks: perceptual visual search for victims, assistance teleoperation to assist robot, and navigation path planning and coordination. For the studies reported,(More)
INTRODUCTION Exciting applications are emerging that involve large, heterogeneous human-robot teams acting in complex environments. Examples include search and rescue [5], disaster response [12], and military applications [4]. Robots are capable of augmentation and force multiplication of human assets, providing superhuman perception, coverage, and(More)
This paper addresses the problem of using a fleet of autonomous watercraft to create models of various water quality parameters in complex environments using intelligent sampling algorithms. Maps depicting the spatial variation of these parameters can help researchers understand how certain ecological processes work and in turn help reduce the negative(More)
OBJECTIVE The number of robots an operator can supervise increases with the robots' level of autonomy. The reported study investigates multirobot foraging to identify aspects of the task most suitable for automation. BACKGROUND Many envisioned applications of robotics involve multirobot teams. One of the simplest of these applications is foraging, in(More)