Prasad Perlekar

Learn More
We study an individual based model describing competition in space between two different alleles. Although the model is similar in spirit to classic models of spatial population genetics such as the stepping stone model, here however space is continuous and the total density of competing individuals fluctuates due to demographic stochasticity. By means of(More)
Organisms often grow, migrate and compete in liquid environments, as well as on solid surfaces. However, relatively little is known about what happens when competing species are mixed and compressed by fluid turbulence. In these lectures we review our recent work on population dynamics and population genetics in compressible velocity fields of one and two(More)
We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasilocalization and a remarkable reduction in the carrying capacity. The statistical properties of the population(More)
The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger(More)
  • 1