Learn More
Cardiac modelling is the area of physiome modelling where the available simulation software is perhaps most mature, and it therefore provides an excellent starting point for considering the software requirements for the wider physiome community. In this paper, we will begin by introducing some of the most advanced existing software packages for simulating(More)
Breast cancer is one of the biggest killers in the western world, and early diagnosis is essential for improved prognosis. The shape of the breast varies hugely between the scenarios of magnetic resonance (MR) imaging (patient lies prone, breast hanging down under gravity), X-ray mammography (breast strongly compressed) and ultrasound or biopsy/surgery(More)
a r t i c l e i n f o a b s t r a c t Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence.(More)
Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled(More)
Ongoing developments in cardiac modelling have resulted, in particular, in the development of advanced and increasingly complex computational frameworks for simulating cardiac tissue electrophysiology. The goal of these simulations is often to represent the detailed physiology and pathologies of the heart using codes that exploit the computational potential(More)
Much effort has been devoted to developing numerical techniques for solving the equations that describe cardiac electrophysiology, namely the monodomain equations and bidomain equations. Only a limited selection of publications, however, address the development of numerical techniques for mechanoelectric simulations where cardiac electrophysiology is(More)
OBJECTIVES The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal(More)
In this paper, we review multi-scale models of solid tumour growth and discuss a middle-out framework that tracks individual cells. By focusing on the cellular dynamics of a healthy colorectal crypt and its invasion by mutant, cancerous cells, we compare a cell-centre, a cell-vertex and a continuum model of cell proliferation and movement. All models(More)
Two of the major imaging modalities used to detect and monitor breast cancer are (contrast enhanced) magnetic resonance (MR) imaging and mammography. Image fusion, including accurate registration between MR images and mammograms, or between CC and MLO mammograms, is increasingly key to patient management (for example in the multidisciplinary meeting), but(More)
Ongoing developments in cardiac modelling have resulted, in particular, in the development of advanced and increasingly complex computational frameworks for simulating cardiac tissue electrophysiology. The goal of these simulations is often to represent the detailed physiology and pathologies of the heart using codes that exploit the computational potential(More)