Learn More
Cardiac modelling is the area of physiome modelling where the available simulation software is perhaps most mature, and it therefore provides an excellent starting point for considering the software requirements for the wider physiome community. In this paper, we will begin by introducing some of the most advanced existing software packages for simulating(More)
Breast cancer is one of the biggest killers in the western world, and early diagnosis is essential for improved prognosis. The shape of the breast varies hugely between the scenarios of magnetic resonance (MR) imaging (patient lies prone, breast hanging down under gravity), X-ray mammography (breast strongly compressed) and ultrasound or biopsy/surgery(More)
Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled(More)
Two of the major imaging modalities used to detect and monitor breast cancer are (contrast enhanced) magnetic resonance (MR) imaging and mammography. Image fusion, including accurate registration between MR images and mammograms, or between CC and MLO mammograms, is increasingly key to patient management (for example in the multidisciplinary meeting), but(More)
a r t i c l e i n f o a b s t r a c t Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence.(More)
BACKGROUND AND PURPOSE Understanding drug effects on the heart is key to safety pharmacology assessment and anti-arrhythmic therapy development. Here our goal is to demonstrate the ability of computational models to simulate the effect of drug action on the electrical activity of the heart, at the level of the ion-channel, cell, heart and ECG body surface(More)
The efficient solution of the bidomain equations is a fundamental tool in the field of cardiac electrophysiology. When choosing a finite element discretization of the coupled system, one has to deal with the solution of a large, highly sparse system of linear equations. The conjugate gradient algorithm, along with suitable preconditioning, is the natural(More)
The occlusion of a coronary artery results in myocardial is-chemia, significantly disturbing the heart's normal electrical behavior, with potentially lethal consequences, such as sustained arrhythmias. Biologists attempt to shed light on underlying mechanisms with optical voltage mapping, a widely used technique for non-contact visualization of surface(More)
Computational models of cardiac electrophysiology have been used for over half a century to investigate physiological mechanisms and generate hypotheses for experimental testing, and are now starting to play a role in clinical applications. There is currently a great deal of interest in using models as diagnostic or therapeutic aids, for example using(More)