Pran K. Datta

Learn More
Small molecule inhibitors of signaling pathways have proven to be extremely useful for the development of therapeutic strategies for human cancers. Blocking the tumor-promoting effects of transforming growth factor-beta (TGF-beta) in advanced stage carcinogenesis provides a potentially interesting drug target for therapeutic intervention. Although very few(More)
Members of the transforming growth factor-beta (TGF-beta) superfamily mediate a broad range of biological activities by regulating the expression of target genes. Smad proteins play a critical role in this process by binding directly to the promoter elements and/or associating with other transcription factors. TGF-beta1 up-regulates several genes(More)
The transforming growth factor-ss (TGF-beta) signaling pathway plays a pivotal role in diverse cellular processes. TGF-beta switches its role from a tumor suppressor in normal or dysplastic cells to a tumor promoter in advanced cancers. It is widely believed that the Smad-dependent pathway is involved in TGF-beta tumor-suppressive functions, whereas(More)
BACKGROUND & AIMS Transforming growth factor (TGF)-beta signaling occurs through Smads 2/3/4, which translocate to the nucleus to regulate transcription; TGF-beta has tumor-suppressive effects in some tumor models and pro-metastatic effects in others. In patients with colorectal cancer (CRC), mutations or reduced levels of Smad4 have been correlated with(More)
Members of the transforming growth factor-beta (TGF-beta) family regulate a wide range of biological processes including cell proliferation, migration, differentiation, apoptosis, and extracellular matrix deposition. Resistance to TGF-beta-mediated tumour suppressor function in human lung cancer may occur through the loss of type II receptor (TbetaRII)(More)
Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been(More)
Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is(More)
The transcription regulatory protein Sp3 shares more than 90% sequence homology with Sp1 in the DNA-binding domain and they bind to the same cognate DNA-element. However, the transcriptional activities of these two Sp-family factors are not equivalent. While Sp1 functions strictly as a transcriptional activator, Sp3 has been shown to be transcriptionally(More)
Epidemiological studies have shown that most cases of lung cancers (85%-90%) are directly attributable to tobacco smoking. Although association between cigarette smoking and lung cancer is well documented, surprisingly little is known about the molecular mechanisms of how smoking is involved in epithelial-to-mesenchymal transition (EMT) through epigenetic(More)
Transforming growth factor beta (TGF-beta) is the prototype for an evolutionarily conserved superfamily of secreted factors implicated in diverse biological phenomena. The pleiotropic responses to TGF-beta are initiated by a heteromeric receptor complex that binds and phosphorylates downstream effectors. Among these, the Smads have been extensively studied.(More)