Learn More
Change detection is one of the most commonly encountered low-level tasks in computer vision and video processing. A plethora of algorithms have been developed to date, yet no widely accepted, realistic, large-scale video dataset exists for benchmarking different methods. Presented here is a unique change detection benchmark dataset consisting of nearly(More)
When it is desired to transmit redundant data over an insecure and bandwidth-constrained channel, it is customary to first compress the data and then encrypt it. In this paper, we investigate the novelty of reversing the order of these steps, i.e., first encrypting and then compressing, without compromising either the compression efficiency or the(More)
Despite a significant growth in the last few years, the availability of 3D content is still dwarfed by that of its 2D counterpart. To close this gap, many 2D-to-3D image and video conversion methods have been proposed. Methods involving human operators have been most successful but also time-consuming and costly. Automatic methods, which typically make use(More)
This paper addresses the important aspect of compressing and transmitting video signals generated by wireless broadband networks while heeding the architectural demands imposed by these networks in terms of energy constraints as well as the channel uncertainty related to the wireless communication medium. Driven by the need to develop light, robust,(More)
Change detection is one of the most important lowlevel tasks in video analytics. In 2012, we introduced the changedetection.net (CDnet) benchmark, a video dataset devoted to the evalaution of change and motion detection approaches. Here, we present the latest release of the CDnet dataset, which includes 22 additional videos (70; 000 pixel-wise annotated(More)
Automatic recognition of human actions from video has been studied for many years. Although still very difficult in uncontrolled scenarios, it has been successful in more restricted settings (e.g., fixed viewpoint, no occlusions) with recognition rates approaching 100%. However, the best-performing methods are complex and computationally-demanding and thus(More)
The Kinect has primarily been used as a gesture-driven device for motion-based controls. To date, Kinect-based research has predominantly focused on improving tracking and gesture recognition across a wide base of users. In this paper, we propose to use the Kinect for biometrics; rather than accommodating a wide range of users we exploit each user's(More)