Learn More
The capacity of a wireless network is the maximum possible amount of simultaneous communication, taking interference into account. Formally, we treat the following problem. Given is a set of links, each a sender-receiver pair located in a metric space, and an assignment of power to the senders. We seek a maximum subset of links that are feasible in the SINR(More)
We study the wireless scheduling problem in the SINR model. More specifically, given a set of $$n$$ n links, each a sender–receiver pair, we wish to partition (or schedule) the links into the minimum number of slots, each satisfying interference constraints allowing simultaneous transmission. In the basic problem, all senders transmit with the same uniform(More)
We consider the capacity problem (or, the single slot scheduling problem) in wireless networks. Our goal is to maximize the number of successful connections in arbitrary wireless networks where a transmission is successful only if the signal-to-interference-plus-noise ratio at the receiver is greater than some threshold. We study a game theoretic approach(More)
This paper considers the well-studied problem of clustering a set of objects under a probabilistic model of data in which each object is represented as a vector over the set of features, and there are only <i>k</i> different types of objects. In general, earlier results (mixture models and "planted" problems on graphs) often assumed that all coordinates of(More)
AIMS Hypoxia has been implicated as a cause of adipose tissue inflammation in obesity, although the inflammatory response of human adipose tissue to hypoxia is not well understood. The goal of this study was to define in vitro inflammatory responses of human adipose tissue to hypoxia and identify molecular mechanisms of hypoxia-induced inflammation. (More)