Pradeepkumar Jagadesan

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Water-soluble gold nanoparticles (AuNP) stabilized with cavitands having carboxylic acid groups have been synthesized and characterized by a variety of techniques. Apparently, the COOH groups similar to thiol are able to prevent aggregation of AuNP. These AuNP were stable either as solids or in aqueous solution. Most importantly, these cavitand(More)
Two deep cavity cavitands, octa acid and resorcinol-capped octa acid, have been established to be good triplet energy donors in the excited state and electron donors in the ground state to excited acceptors. This property endows them the capacity to be "active" reaction containers. The above recognition provides opportunities to investigate the excited(More)
In this report, we present methods of functionalization of AuNP's with deep-cavity cavitands that can include organic molecules. Two types of deep-cavity cavitand-functionalized AuNP's have been synthesized and characterized, one soluble in organic solvents and the other in water. Functionalized AuNP soluble in organic solvents forms a 1:1 host-guest(More)
Examples of release of organic acids from encapsulated p-methoxyphenacyl esters provided here demonstrate the value of a phototrigger strategy to release chemicals of interest in water from hydrophobic precursors. In this study, a photochemical β-cleavage process centered on the p-methoxyphenacyl group is exploited to release the acid of interest from a(More)
We report the clean, efficient photorelease of a series of carboxylic acids embedded in octa acid (OA) host and protected by a p-hydroxyphenacyl cage. A key role is played by the cage by providing hydrophobicity for entry into the OA enclosure and yet readily removable as a photoactivated protecting group for release from the host. The rapid photo-Favorskii(More)
The synthesis and photophysical properties of three tris(N-salicylideneaniline) (TSA) compounds containing 1,3,5-triarylbenzene, -tristyrylbenzene, and -tris(arylethynyl)benzene core units are reported. The TSA compounds underwent efficient excited-state intramolecular proton transfer (ESIPT) in solution and in solid state due to the preformed C=N⋅⋅⋅H-O(More)
  • 1