Learn More
In many real-world multiagent applications such as distributed sensor nets, a network of agents is formed based on each agent's limited interactions with a small number of neighbors. While distributed POMDPs capture the real-world uncertainty in multiagent domains, they fail to exploit such locality of interaction. Distributed constraint optimization (DCOP)(More)
Distributed Constraint Optimization (DCOP) is an elegant formalism relevant to many areas in multiagent systems, yet complete algorithms have not been pursued for real world applications due to perceived complexity. To capably capture a rich class of complex problem domains, we introduce the Distributed Multi-Event Scheduling (DiMES) framework and design(More)
Distributed Partially Observable Markov Decision Problems (Distributed POMDPs) are a popular approach for modeling multi-agent systems acting in uncertain domains. Given the significant complexity of solving distributed POMDPs, particularly as we scale up the numbers of agents, one popular approach has focused on approximate solutions. Though this approach(More)
Distributed POMDPs provide an expressive framework for modeling multiagent collaboration problems, but NEXP-Complete complexity hinders their scalability and application in real-world domains. This paper introduces a subclass of distributed POMDPs, and TREMOR, an algorithm to solve such distributed POMDPs. The primary novelty of TREMOR is that agents plan(More)
It is critical that agents deployed in real-world settings, such as businesses, offices, universities and research laboratories, protect their individual users’ privacy when interacting with other entities. Indeed, privacy is recognized as a key motivating factor in the design of several multiagent algorithms, such as in distributed constraint reasoning(More)
The use of distributed POMDPs for cooperative teams has been severely limited by the incredibly large joint policy-space that results from combining the policy-spaces of the individual agents. However, much of the computational cost of exploring the entire joint policy space can be avoided by observing that in many domains important interactions between(More)
Today within the AAMAS community, we see at least four competing approaches to building multiagent systems: belief-desire-intention (BDI), distributed constraint optimization (DCOP), distributed POMDPs, and auctions or game-theoretic approaches. While there is exciting progress within each approach, there is a lack of cross-cutting research. This paper(More)
For agents deployed in real-world settings, such as businesses, universities and research laboratories, it is critical that agents protect their individual users' privacy when interacting with others entities. Indeed, privacy is recognized as a key motivating factor in design of several multiagent algorithms, such as distributed constraint optimization(More)
The article focuses on decentralized reinforcement learning (RL) in cooperative multi-agent games, where a team of independent learning agents (ILs) try to coordinate their individual actions to reach an optimal joint action. Within this framework, some algorithms based on Q-learning are proposed in recent works. Especially, we are interested in Distributed(More)