Pradeep Kumar Malakar

Learn More
A modular process risk model has been constructed that describes the manufacture of dairy dessert products and hazards that arise from non-proteolytic Clostridium botulinum. The model describes batch manufacture and consumer storage of a family size generic dairy dessert but includes a realistic quantification that could apply to a specific food product.(More)
Microbial interaction can be ignored in predictive microbiology under most conditions. We show that interactions are only important at high population densities, using published data on inhibition of growth of Listeria monocytogenes in broth. Our analysis using growth models from predictive microbiology indicated that interactions only occur at population(More)
AIM To assess the safety of Bifidobacterium longum (B. longum) JDM301 based on complete genome sequences. METHODS The complete genome sequences of JDM301 were determined using the GS 20 system. Putative virulence factors, putative antibiotic resistance genes and genes encoding enzymes responsible for harmful metabolites were identified by blast with(More)
UNLABELLED The aim of this study was to simultaneously construct PCR-DGGE-based predictive models of Listeria monocytogenes and Vibrio parahaemolyticus on cooked shrimps at 4 and 10°C. Calibration curves were established to correlate peak density of DGGE bands with microbial counts. Microbial counts derived from PCR-DGGE and plate methods were fitted by(More)
The growth process of Lactobacillus curvatus colonies was quantified by a coupled growth and diffusion equation incorporating a volumetric rate of lactic acid production. Analytical solutions were compared to numerical ones, and both were able to predict the onset of interaction well. The derived analytical solution modeled the lactic acid concentration(More)
The modelling approach presented in this study can be used to predict when interactions between microorganisms in homogenous systems occur. It was tested for the interaction between Lactobacillus curvatus and Enterobacter cloacae. In this binary system, L. curvatus produces lactic acid which decreases the pH in the system. The pH decrease was found to be(More)
We have developed a model for the variability of spore lag times and shown that variability has an important role in the quantitative assessment of risks associated with spore forming bacteria in food. The model includes two sequential independent delay times that contribute to the lag time for a single spore. We have shown that a population of variable(More)
Mixed cultures of Lactobacillus curvatus and Enterobacter cloacae were chosen as a model system to quantitatively study microbial interactions involved in food spoilage and food preservation. In this paper models were developed to predict the individual behaviour of L. curvatus and E. cloacae in pure suspension cultures as a function of the glucose and(More)
Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report(More)
Fluorescence ratio imaging is a non-invasive technique for studying the formation of microgradients in immobilised bacterial colonies. These gradients can be quantified easily when combined with the gel cassette system designed at the Institute of Food Research, Norwich, UK. Colonies of Lactobacillus curvatus were observed using this technique and relevant(More)