Pouya Partovi-Azar

Learn More
We report the complete assignment of the vibrational spectrum of dipalmitoylphosphatidylcholine (DPPC), which belongs to the most ubiquitous membrane phospholipid family, phosphatidylcholine. We find that water hydrating the lipid headgroups enables efficient energy transfer across membrane leaflets on sub-picosecond time scales. The emergence of spatially(More)
Using density functional theory calculations and ab initio molecular dynamics simulations we have studied the structures and the Raman spectra of Li2S4 clusters, which are believed to be the last polysulfide intermediates before the formation of Li2S2/Li2S during the discharge process in Li-S batteries. Raman spectra have been obtained using a new technique(More)
It has been shown that the two different orientations of Stone-Wales (SW) defects, i.e. longitudinal and circumferential SW defects, on carbon nanotubes (CNTs) result in two different electronic structures. Based on density functional theory we have shown that the longitudinal SW defects do not open a bandgap near the Fermi energy, while a relatively small(More)
We report on real-time time-dependent density functional theory calculations on direction-dependent electron and hole transfer processes in molecular systems. As a model system, we focus on α-sulfur. It is shown that time scale of the electron transfer process from a negatively charged S8 molecule to a neighboring neutral monomer is comparable to that of a(More)
The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH(More)
We investigate the structure and electronic properties of phosphatidylcholine (PC) under different degrees of hydration at the single-molecule and monolayer type level by linear scaling ab initio calculations. Upon hydration, the phospholipid undergoes drastic long-range conformational rearrangements which lead to a sickle-like ground-state shape. The(More)
We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed.(More)
  • 1