Poramate Manoonpong

Learn More
Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely(More)
* Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and(More)
Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by(More)
A neurocontroller is described which generates the basic locomotion and controls the sensor-driven behavior of a four-legged and a six-legged walking machine. The controller utilizes discrete-time neuro-dynamics, and is ofmodular structure. One module isfor processing sensor signals, one is a neural oscillator network serving as a central pattern generator,(More)
This case study demonstrates how the synthesis and the analysis of minimal recurrent neural robot control provide insights into the exploration of embodiment. By using structural evolution, minimal recurrent neural networks of general type were evolved for behavior control. The small size of the neural structures facilitates thorough investigations of(More)
— Insects, e.g. cockroaches and stick insects, have found fascinating solutions for the problem of locomotion, especially climbing over a large variety of obstacles. Research on behavioral neurobiology has identified key behavioral patterns of these animals (i.e., body flexion, center of mass elevation, and local leg reflexes) necessary for climbing.(More)
Wild rodents learn the danger-predicting meaning of predator bird calls through the paring of cues which are an aversive stimulus (immediate danger signal or unconditioned stimulus, US) and the acoustic stimulus (predator signal or conditioned stimulus, CS). This learning is a form of pavlovian conditioning. In analogy, in this article a setup is described(More)