Learn More
Regulation of protein synthesis is critical for cell growth and maintenance. Ageing in many organisms, including humans, is accompanied by marked alterations in both general and specific protein synthesis. Whether these alterations are simply a corollary of the ageing process or have a causative role in senescent decline remains unclear. An array of protein(More)
Necrotic cell death underlies the pathology of numerous human neurodegenerative conditions. In the nematode Caenorhabditis elegans, gain-of-function mutations in specific ion channel genes such as the degenerin genes deg-1 and mec-4, the acetylcholine receptor channel subunit gene deg-3 and the G(s) protein alpha-subunit gene gsa-1 evoke an analogous(More)
Processing bodies (PBs) and stress granules (SGs) are related, cytoplasmic RNA-protein complexes that contribute to post-transcriptional gene regulation in all eukaryotic cells. Both structures contain translationally repressed mRNAs and several proteins involved in silencing, stabilization or degradation of mRNAs, especially under environmental stress.(More)
Necrotic cell death is defined by distinctive morphological characteristics that are displayed by dying cells (Walker, N.I., B.V. Harmon, G.C. Gobe, and J.F. Kerr. 1988. Methods Achiev. Exp. Pathol. 13:18-54). The cellular events that transpire during necrosis to generate these necrotic traits are poorly understood. Recent studies in the nematode(More)
Numerous studies implicate necrotic cell death in devastating human pathologies such as stroke and neurodegenerative diseases. Investigations in both nematodes and mammals converge to implicate specific calpain and aspartyl proteases in the execution of necrotic cell death. It is believed that these proteases become activated under conditions that inflict(More)
Mechanotransduction, the conversion of a mechanical stimulus into a biological response, constitutes the basis for a plethora of fundamental biological processes such as the senses of touch, balance, and hearing and contributes critically to development and homeostasis in all organisms. Despite this profound importance in biology, we know remarkably little(More)
The general control nonderepressible 2 (GCN2) kinase is a nutrient-sensing pathway that responds to amino acids deficiency and induces a genetic program to effectively maintain cellular homeostasis. Here we established the conserved role of Caenorhabditis elegans GCN-2 under amino acid limitation as a translation initiation factor 2 (eIF2) kinase. Using a(More)
Ageing in many organisms, including humans, is accompanied by marked alterations in both general and specific protein synthesis. Protein synthesis is normally under tight control by a broad array of regulatory factors, which facilitate appropriate rates of mRNA translation. Are the wide changes in protein synthesis simply a corollary of the ageing process(More)