Learn More
Using a fluorescent viability assay, immunocytochemistry, patch-clamp recordings, and Ca(2+) imaging analysis, we report that ouabain, a specific ligand of the Na(+),K(+)-ATPase cardiac glycoside binding site, can prevent glutamate receptor agonist-induced apoptosis in cultured rat cortical neurons. In our model of excitotoxicity, a 240-min exposure to 30(More)
Human endometrium-derived mesenchymal stem cells (hMESCs) enter the premature senescence under sublethal oxidative stress, however underlying mechanism remains unknown. Here, we showed that exogenous H2O2 induces a rapid phosphorylation and co-localization of ATM, H2A.X, 53BP1 leading to DNA damage response (DDR) activation. DDR was accompanied with nuclear(More)
Recent studies suggested contribution of homocysteine (HCY) to neurodegenerative disorders and migraine. However, HCY effect in the nociceptive system is essentially unknown. To explore the mechanism of HCY action, we studied short- and long-term effects of this amino acid on rat peripheral and central neurons. HCY induced intracellular Ca²⁺ transients in(More)
Whereas kainate (KA)-induced neurodegeneration has been intensively investigated, the contribution of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in neuronal Ca2+ overload ([Ca2+]i) is still controversial. Using Ca2+ imaging and patch-clamp techniques, we found different types of Ca2+ entry in cultured rat cortical neurons. The(More)
The dynamics of intracellular Ca2+ signal in response to NMDA (N-methyl-D-aspartate, 30 μM) or KA (kainite, 30 μM), its dependence on extracellular Ca2+ and the mechanisms of KA-triggered Ca2+ entry into neurons have been tested in neurons of rat cortical primary cultures. The level of intracellular free Ca2+ concentrations ([Ca2+] i ) was evaluated on(More)
Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator(More)
Effects of 0.01 nM–1 nM ouabain on neuronal survival in excitotoxic stress and ouabain self toxic action in concentrations from 10 nM to 30 μM were studied. Neuronal viability was evaluated by measuring Bcl-2 protein expression and using vital staining test allowing recognition of live, necrotic and apoptotic cells. Excitotoxic stress was induced by 240-min(More)
Intracellular calcium ([Ca2+]i) has been reported to play an important role in autophagy, apoptosis and necrosis, however, a little is known about its impact in senescence. Here we investigated [Ca2+]i contribution to oxidative stress-induced senescence of human endometrium-derived stem cells (hMESCs). In hMESCs sublethal H2O2-treatment resulted in a rapid(More)
To evaluate the possible role of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX) in regulation of N-methyl-d-aspartate (NMDA) receptors (NMDARs), we studied effects of 2-[2-[4-(4-nitrobenzyloxy) phenyl]ethyl]isothiourea methanesulfonate (KB-R7943; KBR) and lithium (inhibitors of NCX) on NMDA-elicited whole-cell currents using the patch-clamp technique on(More)
Here we show that in primary culture of rat cortical neurons the number of episodes of epileptiform curents (EC) provoked by extracellular magnesium removal increases over time. We demonstrate that NMDA receptor agonists in low concentrations induce an elevation of frequency of miniature postsynaptic currents followed by their synchronization resulting in(More)