Learn More
A heretofore-unrecognized multigene family encoding diverse immunoglobulin (Ig) domain-containing proteins (DICPs) was identified in the zebrafish genome. Twenty-nine distinct loci mapping to three chromosomal regions encode receptor-type structures possessing two classes of Ig ectodomains (D1 and D2). The sequence and number of Ig domains, transmembrane(More)
Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14(More)
Environmental sex-determination (ESD) is the phenomenon by which environmental factors regulate sex-determination, typically occurring during a critical period of early development. Southern flounder (Paralichthys lethostigma) exhibit temperature-dependent sex-determination that appears to be restricted to the presumed XX female genotype with the extremes(More)
The mitochondria of cancer cells are potential targets for chemotherapy. Drugs which primarily affect mitochondrial DNA can be screened using a 'petite' mutagenesis assay in Saccharomyces cerevisiae. We have used this approach to estimate the antimitochondrial effects of a range of current clinical and experimental antitumour drugs with varying modes of(More)
The polymeric immunoglobulin (Ig) receptor (pIgR) is an integral transmembrane glycoprotein that plays an important role in the mammalian immune response by transporting soluble polymeric Igs across mucosal epithelial cells. Single pIgR genes, which are expressed in lymphoid organs including mucosal tissues, have been identified in several teleost species.(More)
Nitrogen mustards play an important role in current cancer chemotherapy. The most effective antitumour agents are those carrying two alkylating functions, probably through their ability to form interstrand cross-links in DNA. Such lesions appear to create more of a block in DNA replication and are more difficult to repair than are most monoadducts. Although(More)
Treatment with an anticancer drug causing mitotic crossing-over could lead to expression of recessive genes, previously masked in a heterozygote. Used clinically, such drugs might cause an increased risk of cancer in cases of familial tumours, such as Wilm's tumour or retinoblastoma. Potentially, novel forms of drug resistance could also be unmasked by such(More)
The antitumor agent DACA (N-[2-dimethylamino)ethyl]acridine-4-carboxamide) a new DNA intercalating topoisomerase II poison, was distinguishable from clinical topoisomerase poisons (amsacrine, daunorubicin, doxorubicin and etoposide) in its induction of aberrant colonies in the yeast Saccharomyces cerevisiae D5. It was not only more recombinogenic, but was(More)
Nitrogen mustards are commonly used in cancer chemotherapy. They interact with DNA at electronegative sites, primarily forming N7 guanine mono-adducts and interstrand cross-links. Targeting nitrogen mustards to DNA by attachment of a DNA minor groove binding carrier such as the bisbenzimidazoles Hoechst 33258 (pibenzimol) or Hoechst 33342 (HOE) makes it(More)
Four series of aniline mustards linked to a DNA-affinic acridine chromophore by alkyl chains of varying length (2-5 carbon atoms) have been studied for their mutagenic properties, as estimated in four strains of Salmonella typhimurium and in Saccharomyces cerevisiae strain D5. The four series have very different mustard reactivities, as determined by the(More)