Learn More
Latent semantic models, such as LSA, intend to map a query to its relevant documents at the semantic level where keyword-based matching often fails. In this study we strive to develop a series of new latent semantic models with a deep structure that project queries and documents into a common low-dimensional space where the relevance of a document given a(More)
Separating singing voices from music accompaniment is an important task in many applications, such as music information retrieval, lyric recognition and alignment. Music accompaniment can be assumed to be in a low-rank subspace, because of its repetition structure; on the other hand, singing voices can be regarded as relatively sparse within songs. In this(More)
Monaural source separation is useful for many real-world applications though it is a challenging problem. In this paper, we study deep learning for monaural speech separation. We propose the joint optimization of the deep learning models (deep neural networks and recurrent neural networks) with an extra masking layer, which enforces a reconstruction(More)
Despite their theoretical appeal and grounding in tractable convex optimization techniques, kernel methods are often not the first choice for large-scale speech applications due to their significant memory requirements and computational expense. In recent years, randomized approximate feature maps have emerged as an elegant mechanism to scale-up kernel(More)
Monaural source separation is important for many real world applications. It is challenging since only single channel information is available. In this paper, we explore using deep recurrent neural networks for singing voice separation from monaural recordings in a supervised setting. Deep recurrent neural networks with different temporal connections are(More)
Monaural source separation is important for many real world applications. It is challenging because, with only a single channel of information available, without any constraints, an infinite number of solutions are possible. In this paper, we explore joint optimization of masking functions and deep recurrent neural networks for monaural source separation(More)
Teaching a computer to read and answer general questions pertaining to a document is a challenging yet unsolved problem. In this paper, we describe a novel neural network architecture called the Reasoning Network (ReasoNet) for machine comprehension tasks. ReasoNets make use of multiple turns to effectively exploit and then reason over the relation among(More)
The recently developed deep learning architecture, a kernel version of the deep convex network (K-DCN), is improved to address the scalability problem when the training and testing samples become very large. We have developed a solution based on the use of random Fourier features, which possess the strong theoretical property of approximating the Gaussian(More)
In recent years, designing the coding and pooling structures in layered networks has been shown to be a useful method for learning high-level feature representations for visual data. Yet, such learning structures have not been extensively studied for audio signals. In this paper, we investigate different pooling strategies based on the sparse coding scheme(More)
Recent studies on knowledge base completion, the task of recovering missing relationships based on recorded relations, demonstrate the importance of learning embeddings from multi-step relations. However, due to the size of knowledge bases, learning multi-step relations directly on top of observed instances could be costly. In this paper, we propose(More)