Piyamate Wisanuvej

Learn More
This paper presents a novel blind collision detection and material characterisation scheme for a compliant robotic arm. By the incorporation of a simple MEMS accelerometer at each joint, the robot is able to detect collision, identify the material of an obstacle, and create a map of the environment. Detailed hardware design is provided, illustrating its(More)
This letter introduces a single-port robotic platform for transanal endoscopic microsurgery (TEMS). Two robotically controlled articulated surgical instruments are inserted via a transanal approach to perform submucosal or full-thickness dissection. This system is intended to replace the conventional TEMS approach that uses manual laparoscopic instruments.(More)
This paper introduces the design and characterization of a robotic surgical instrument produced mainly with rapid prototyping techniques. Surgical robots have generally complex structures and have therefore an elevated cost. The proposed instrument was designed to incorporate minimal number of components to simplify the assembly process by leveraging the(More)
The use of conventional surgical tool holders requires an assistant during positioning and adjustment due to the lack of weight compensation. In this paper, we introduce a robotic arm system with hands-on control approach. The robot incorporates a force sensor at the end effector which realises tool weight compensation as well as hands-on manipulation. On(More)
  • 1