Pirre Raijas

Learn More
Artistic creativity forms the basis of music culture and music industry. Composing, improvising and arranging music are complex creative functions of the human brain, which biological value remains unknown. We hypothesized that practicing music is social communication that needs musical aptitude and even creativity in music. In order to understand the(More)
Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172(More)
Music is listened in all cultures. We hypothesize that willingness to produce and perceive sound and music is social communication that needs musical aptitude. Here, listening to music was surveyed using a web-based questionnaire and musical aptitude using the auditory structuring ability test (Karma Music test) and Carl Seashores tests for pitch and for(More)
Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using(More)
Here we characterized the genome-wide architecture of copy number variations (CNVs) in 286 healthy, unrelated Finnish individuals belonging to the MUSGEN study, where molecular background underlying musical aptitude and related traits are studied. By using Illumina HumanOmniExpress-12v.1.0 beadchip, we identified 5493 CNVs that were spread across 467(More)
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported(More)
Although brain imaging studies have demonstrated that listening to music alters human brain structure and function, the molecular mechanisms mediating those effects remain unknown. With the advent of genomics and bioinformatics approaches, these effects of music can now be studied in a more detailed fashion. To verify whether listening to classical music(More)
  • 1