Piotr Zarzycki

Learn More
Electron mobility within iron (oxyhydr)oxides enables charge transfer between widely separated surface sites. There is increasing evidence that this internal conduction influences the rates of interfacial reactions and the outcomes of redox-driven phase transformations of environmental interest. To determine the links between crystal structure and(More)
The free energy profile for electron flow through the bacterial decahaem cytochrome MtrF has been computed using thermodynamic integration and classical molecular dynamics. The extensive calculations on two versions of the structure help to validate the method and results, because differences in the profiles can be related to differences in the charged(More)
Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well-defined hematite/electrolyte interfaces. Our recently proposed thermodynamic model [1,25] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly(More)
Electron-transporting multi-heme cytochromes are essential to the metabolism of microbes that inhabit soils and carry out important biogeochemical processes. Recently the first crystal structure of a prototype bacterial deca-heme cytochrome (MtrF) has been resolved and its electrochemistry characterized. However, the molecular details of electron transport(More)
Reaction rates of environmental processes occurring at hydrated mineral surfaces are in part controlled by the electrostatic potential that develops at the interface. This potential depends on the structure of exposed crystal faces as well as the pH and the type of ions and their interactions with these faces. Despite its importance, experimental methods(More)
The limitations of common theoretical and molecular computational approaches for predicting electron transfer quantities were assessed, using an archetypal bridged ferrous-ferric electron transfer system in aqueous solution. The basis set effect on the magnitude of the electronic coupling matrix element computed using the quasi-diabatic method was carefully(More)
Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined.(More)
In this feature article we discuss recent advances and challenges in measuring, analyzing and interpreting the electrostatic potential development at crystal/electrolyte interfaces. We highlight progress toward fundamental understanding of historically difficult aspects, including point of zero potential estimation for single faces of single crystals, the(More)
Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO(2)(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO(2)(m) into(More)
Hematite (α-Fe2O3) persists as a promising candidate for photoelectrochemical water splitting, but a slow oxygen evolution reaction (OER) at its surfaces remains a limitation. Here we extend a series of studies that examine pH-dependent surface potentials and electron-transfer properties of effectively perfect low-index crystal faces of hematite in contact(More)