Piotr Salabura

Learn More
This article is focused on data acquisition system (DAQ) designed especially to be used in positron emission tomography (PET) or single-photon emission computed tomography. The system allows for continuous registration of analog signals during measurement. It has been designed to optimize registration and processing of the information carried by signals(More)
Novel time-of-flight positron emission tomogra-phy (TOF-PET) scanner solutions demand, apart from the state-of-the-art detectors, software for fast processing of the gathered data, monitoring of the whole scanner, and reconstruction of the PET image. In this article, we present an analysis framework for the novel STRIP-PET scanner developed by the J-PET(More)
We discuss computing issues for data analysis and image reconstruction of PET-TOF medical scanner or other medical scanning devices producing large volumes of data. Service architecture based on the grid and cloud concepts for distributed processing is proposed and critically discussed.
Photomultipliers are commonly used in commercial PET scanner as devices which convert light produced in scintillator by gamma quanta from positron-electron annihilation into electrical signal. For proper analysis of obtained electrical signal, a photomultiplier gain curve must be known, since gain can be significantly different even between photomultipliers(More)
A positron emission tomography (PET) scan does not measure an image directly. Instead, a PET scan measures a sinogram at the boundary of the field-of-view that consists of measurements of the sums of all the counts along the lines connecting the two detectors. Because there is a multitude of detectors built in a typical PET structure, there are many(More)
The complexity of the hardware and the amount of data collected during the PET imaging process require application of modern methods of efficient data organization and processing. In this article we will discuss the data structures and the flow of collected data from the novel TOF-PET medical scanner which is being developed at the Jagiellonian University.(More)
A method of determination of a gamma quantum absorption point in a plastic scintillator block using a matrix of wavelength-shifting (WLS) strips is proposed. Application of this method for improvement of position resolution in newly proposed PET detectors based on plastic scintillators is presented. The method enables to reduce parallax errors in(More)
This paper describes three methods regarding the production of plastic scintillators. One method appears to be suitable for the manufacturing of plastic scintillators, revealing properties which fulfill the requirements of novel positron emission tomography scanners based on plastic scintillators. The key parameters of the manufacturing process are(More)