Piotr Piotrowiak

Learn More
Phenylenethynylene (PE) rigid linkers (para and meta) were used to anchor pyrene to the surface of TiO2 (anatase) and ZrO2 nanoparticle thin films through the two COOH groups of an isophthalic acid (Ipa) unit. Four chromophore-linker models were studied in solution and bound. Two are novel meta-pyrene-PE linker systems: dimethyl(More)
While advances in protein design have made possible the construction of protein architectures with nativelike properties and predictable structures and function, there are as of yet no examples of functional, protein-based, solar energy conversion systems. This communication describes the design and characterization of an artificial reaction center (RC)(More)
Ultrafast photolysis (lambdaex = 270, 350, or 360 nm) of bromophenyl, chlorophenyl, fluorophenyl, and fluoro-para-trifluoromethylphenyl diazirines produces transient species which absorb broadly in the UV and visible regions. Transient decay can be fit to either mono- or biexponential functions (tau1 approximately 0.3-10 ps, tau2 approximately 10-350 ps;(More)
The synthesis of well-defined luminescent organoboron polymers via a novel three-step procedure starting from silylated polystyrene is reported. Highly selective borylation of poly(4-trimethylsilylstyrene) (PS-Si), followed by replacement of the bromine substituents in poly(4-dibromoborylstyrene) (PS-BBr) with substituted thienyl groups (R = H, 3-hexyl,(More)
Extended rigid tripodal sensitizers were used to investigate the rate of long-distance photoinduced charge transfer from the MLCT excited states of RuII-based chromophores into mesoporous TiO2 films. The distance between the RuII center and the surface of the semiconductor was 24 A. Rapid biexponential charge injection with a major subpicosecond component(More)
We present a Kerr-gated microscope capable of collecting diffraction-limited 2D fluorescence images with sub-100 fs time resolution. The concept is based on the insertion of a solid-state optical Kerr gate into a wide-field microscope. In addition to the considerably improved temporal resolution, the wide-field design allows for simultaneous tracking of(More)
A viologen derivative, 1,1'-di-p-tolyl-(4,4'-bipyridine)-1,1'-diium dichloride (DTV(2+)), was studied in solution and encapsulated in cucurbit[7]uril (CB7), a macrocyclic host. Upon encapsulation, DTV(2+) exhibited dramatically enhanced fluorescence. Aqueous solutions of DTV(2+) were weakly fluorescent (Φ = 0.01, τ < 20 ps), whereas the emission of the(More)
As it has been shown by pump-probe experiments electron injection at the interface between a dye molecule and mesoporous TiO2 proceeds with rates exceeding 1 x 10(13) s(-1). However, similar dye-TiO2 systems exhibit residual dye emission with lifetimes extending into the long nanosecond range. To address this inhomogeneity of injection rates time-correlated(More)
Encapsulation of chromophores within Cram-type hemicarcerands allowed the investigation of fundamental photophysical phenomena, such as long-range triplet energy transfer, electron transfer, and the remote heavy atom effect. Furthermore, novel water-soluble hemicarcerands are being used to develop unique hybrid materials composed of semiconductor(More)