Piotr Kukliński

Learn More
The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply.(More)
production of the selector itself — not initiation of its expression (Figure 1B). Initiation of terminal selector gene expression is, rather, triggered through transient regulatory inputs — signals and transcription factors that are only temporally present in a short window of time when a neuron is born. These transient inputs feed into the terminal(More)
Kelp beds support diverse and productive benthic coastal ecosystems and are often perceived as cold water analogs of tropical coral reefs, yet the levels of species richness in polar regions have remained largely unexplored. The present study aims to assess the magnitude of macrozoobenthic species richness associated with the macroalgae in an Arctic kelp(More)
Svalbard bryozoan communities were investigated along a depth range from the surface to 296 m between the inner glacial fronts and fjord mouths during 2001 and 2002. The main study area was Kongsfjorden (79°N, 12°E). A total of 137 taxa of bryozoans were identified: 108 to species, 24 to genus, 3 to family, 1 to order and 1 to phylum level. Cluster and(More)
The epifauna associated with two of the most common species of kelp in the Arctic, Laminaria digitata (Hudson) Lamouroux, 1813 and Saccharina latissima (Linnaeus) Lane, , Mayes, Druehl and Saunders 2006 [synonym: L. saccharina (Linnaeus) Lamouroux, 1813] were examined in Kongsfjorden, Svalbard. The aim of this study was to test whether species richness of(More)
High polar communities tend to be young because of the frequent and intense impact of ice (scour), so colonisation patterns are particularly important. Yet, despite a wealth of studies at temperate and tropical latitudes, we know of no hard substratum settlement/colonisation experiments reported north of 60°N, to date. Here we report on fauna encrusting(More)
The intricate geological evolution of the Arctic Ocean is paralleled by complexities in the biogeographical and phylogenetical histories of the Arctic biota, including bryozoans. Here we present revised taxonomic descriptions for all known species of the bryozoan genus Pseudoflustra, and use the present-day distributions and phylogenetic relationships(More)
The nature of the substratum is a fundamental factor determining the types of organisms and communities found in many terrestrial and benthic habitats. The extent to which this is true in extreme environments was investigated using bryozoan assemblages as model organisms in an Arctic fjord (Kongsfjorden 79°N, 12°E) in summer 2001 using SCUBA. Twenty-seven(More)
Our understanding of diatoms, one of the most important Antarctic primary producers, is based mostly on investigations of plankton, sea-ice, and sediment samples. Herein, we contribute to the limited research devoted to benthic Antarctic diatoms by presenting a study on epiphytic diatom communities sampled in two remote Antarctic regions: Admiralty Bay(More)
This is the first attempt to compile a comprehensive and updated species list for Hydrozoa in the Arctic, encompassing both hydroid and medusa stages and including Siphonophorae. We address the hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic by Hydrozoa after the Last Glacial(More)