Piotr Kowalczyk

Learn More
A review is presented of the one-parameter, nonsmooth bifurcations that occur in a variety of continuous-time piecewise-smooth dynamical systems. Motivated by applications, a pragmatic approach is taken to defining a discontinuity-induced bifurcation (DIB) as a nontrivial interaction of a limit set with respect to a codimension-one discontinuity boundary in(More)
We present a thermodynamic model of adsorption-induced deformation of microporous carbons. The model represents the carbon structure as a macroscopically isotropic disordered three-dimensional medium composed of stacks of slit-shaped pores of different sizes embedded in an incompressible amorphous matrix. Adsorption stress in pores is calculated by means of(More)
The ribosomal protein S2 (RPS2) is encoded by a gene from the highly conserved mammalian repetitive gene family LLRep3. It participates in aminoacyl-transfer RNA binding to ribosome, potentially affecting the fidelity of mRNA translation. These studies were designed to measure the expression of RPS2 during increased cell proliferation. Using Western and(More)
We introduce a new fast numerical method for computing discontinuous solutions to the Boltzmann equation and illustrate it by numerical examples. A combination of adaptive grids for approximation of the distribution function and an approximate fast Fourier transform on non-uniform grids for computing smooth terms in the Boltzmann collision integral is used.
A plausible model for the structure of non-graphitizing carbon is one which consists of curved, fullerene-like fragments grouped together in a random arrangement. Although this model was proposed several years ago, there have been no attempts to calculate the properties of such a structure. Here, we determine the density, pore size distribution and(More)
A strategy for combined experimental and computational screening of candidate carbonaceous materials for capturing highly volatile nerve agents at ambient temperature using physisorption. Based on theoretical calculations of Henry constants and zero-coverage adsorption enthalpies for sarin and DMMP (its common stimulant) adsorbed in model slit-shaped carbon(More)