Piotr Kalita

Learn More
In this paper a methodology of mathematical description of the synthesis, storage and release of the neurotransmitter during the fast synaptic transport is presented. The proposed model is based on the initial and boundary value problem for a parabolic nonlinear partial differential equation (PDE). Presented approach enables to express space and time(More)
In this paper a mathematical description of a presynaptic episode of slow synaptic neuropeptide transport is proposed. Two interrelated mathematical models, one based on a system of reaction diffusion partial differential equations and another one, a compartment type, based on a system of ordinary differential equations (ODE) are formulated. Processes of(More)
Neurotransmitters in the terminal bouton of a presynaptic neuron are stored in vesicles, which diffuse in the cytoplasm and, after a stimulation signal is received, fuse with the membrane and release its contents into the synaptic cleft. It is commonly assumed that vesicles belong to three pools whose content is gradually exploited during the stimulation.(More)
We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well(More)
In this paper the sensitivity of optimal solutions to control problems described by second order evolution subdifferential inclusions under perturbations of state relations and of cost functionals is investigated. First we establish a new existence result for a class of such inclusions. Then, based on the theory of sequential-convergence we recall the(More)