Learn More
The modular protein titin, which is responsible for the passive elasticity of muscle, is subjected to stretching forces. Previous work on the experimental elongation of single titin molecules has suggested that force causes consecutive unfolding of each domain in an all-or-none fashion. To avoid problems associated with the heterogeneity of the modular,(More)
Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force.(More)
Through the study of single molecules it has become possible to explain the function of many of the complex molecular assemblies found in cells. The protein titin provides muscle with its passive elasticity. Each titin molecule extends over half a sarcomere, and its extensibility has been studied both in situ and at the level of single molecules. These(More)
Extracellular matrix proteins are thought to provide a rigid mechanical anchor that supports and guides migrating and rolling cells. Here we examine the mechanical properties of the extracellular matrix protein tenascin by using atomic-force-microscopy techniques. Our results indicate that tenascin is an elastic protein. Single molecules of tenascin could(More)
We developed a method for measuring the efflux of 5-hydroxytryptamine (5-HT, serotonin) from isolated intact granules of the mast cell of the beige mouse. This method combines electroporation of the vesicle membrane with amperometric detection of 5-HT. A single secretory granule is placed between two platinum electrodes (distance approximately 100 microm)(More)
We measured the efflux of 5-hydroxytryptamine (5-HT, serotonin) from an intact secretory granule extracted from the mast cell of the beige mouse. The efflux was measured with amperometry after rupture of the granule membrane was triggered by electroporation. We determined the diffusivity of 5-HT within the secretory granule to be 2.0 x 10(-8) cm2 s(-1) when(More)
Ankyrin repeats are an amino-acid motif believed to function in protein recognition; they are present in tandem copies in diverse proteins in nearly all phyla. Ankyrin repeats contain antiparallel alpha-helices that can stack to form a superhelical spiral. Visual inspection of the extrapolated structure of 24 ankyrin-R repeats indicates the possibility of(More)
A dense network of interconnected proteins and carbohydrates forms the complex mechanical scaffold of living tissues. The recently developed technique of single molecule force spectroscopy using the atomic force microscope (AFM) has enabled a detailed analysis of the force-induced conformations of these molecules and the determinants of their mechanical(More)
The authors declare that they have no competing financial interests. Through the study of single molecules it has become possible to explain the function of many of the complex molecular assemblies found in cells 1–5. The protein titin provides muscle with its passive elasticity. Each titin molecule extends over half a sarco-mere, and its extensibility has(More)
Many common, biologically important polysaccharides contain pyranose rings made of five carbon atoms and one oxygen atom. They occur in a variety of cellular structures, where they are often subjected to considerable tensile stress. The polysaccharides are thought to respond to this stress by elastic deformation, but the underlying molecular rearrangements(More)