Piotr E. Marszalek

Learn More
Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force.(More)
Through the study of single molecules it has become possible to explain the function of many of the complex molecular assemblies found in cells. The protein titin provides muscle with its passive elasticity. Each titin molecule extends over half a sarcomere, and its extensibility has been studied both in situ and at the level of single molecules. These(More)
The modular protein titin, which is responsible for the passive elasticity of muscle, is subjected to stretching forces. Previous work on the experimental elongation of single titin molecules has suggested that force causes consecutive unfolding of each domain in an all-or-none fashion. To avoid problems associated with the heterogeneity of the modular,(More)
Extracellular matrix proteins are thought to provide a rigid mechanical anchor that supports and guides migrating and rolling cells. Here we examine the mechanical properties of the extracellular matrix protein tenascin by using atomic-force-microscopy techniques. Our results indicate that tenascin is an elastic protein. Single molecules of tenascin could(More)
Immunoglobulin-like modules are common components of proteins that play mechanical roles in cells such as muscle elasticity and cell adhesion. Mutations in these proteins may affect their mechanical stability and thus may compromise their function. Using single molecule atomic force microscopy (AFM) and protein engineering, we demonstrate that point(More)
Ubiquitin chains are formed through the action of a set of enzymes that covalently link ubiquitin either through peptide bonds or through isopeptide bonds between their C terminus and any of four lysine residues. These naturally occurring polyproteins allow one to study the mechanical stability of a protein, when force is applied through different linkages.(More)
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the(More)
The unfolding and folding of single protein molecules can be studied with an atomic force microscope (AFM). Many proteins with mechanical functions contain multiple, individually folded domains with similar structures. Protein engineering techniques have enabled the construction and expression of recombinant proteins that contain multiple copies of(More)
We use single-protein atomic force microscopy techniques to detect length phenotypes in an Ig module. To gain amino acid resolution, we amplify the mechanical features of a single module by engineering polyproteins composed of up to 12 identical repeats. We show that on mechanical unfolding, mutant polyproteins containing five extra glycine residues added(More)
A dense network of interconnected proteins and carbohydrates forms the complex mechanical scaffold of living tissues. The recently developed technique of single molecule force spectroscopy using the atomic force microscope (AFM) has enabled a detailed analysis of the force-induced conformations of these molecules and the determinants of their mechanical(More)