Learn More
A novel magnetically separable laccase immobilized system was constructed by adsorbing laccase into bimodal carbon-based mesoporous magnetic composites (CMMC). A large adsorption capacity (491.7 mg g(-1)), excellent activity recovery (91.0%) and broader pH and temperature profiles than free laccase have been exhibited by the immobilized laccase. Thermal(More)
Band gap engineering of atomically thin two-dimensional layered materials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, a simple one-step chemical vapor deposition approach for the simultaneous growth of alloy MoS2xSe2(1-x) triangular nanosheets with complete composition(More)
Nanoscale near-infrared photodetectors are attractive for their potential applications in integrated optoelectronic devices. Here we report the synthesis of GaSb/GaInSb p-n heterojunction semiconductor nanowires for the first time through a controllable chemical vapor deposition (CVD) route. Based on these nanowires, room-temperature, high-performance,(More)
Composition-tunable semiconductor alloy nanowires are emerging as an important class of materials for the realization of high-performance laterally-arranged multiple bandgap (LAMB) solar cells. Here we report the first growth of GaZnSeAs quaternary alloy nanowires with composed elements between two different groups using a temperature/space-selective CVD(More)
Band-selective infrared photodetectors (PDs) are constructed with InAs(x)P(1-x) alloy nanowires from the complete composition range (0 ≤ x ≤ 1) achieved by a new growth route combining the vapor-liquid-solid mechanism with an additional ion-exchange process. Increasing the composition x value from 0 to 1 in the PDs allows the peak response wavelength to be(More)
  • 1