Pinn-Tsong Chiang

Learn More
A second generation motorized nanocar was designed, synthesized, and imaged. To verify structural integrity, NMR-based COSY, NOESY, DEPT, HSQC, and HMBC experiments were conducted on the intermediate motor. All signals in (1)H NMR were unambiguously assigned, and the results were consistent with the helical structure of the motor. The nanocar was deposited(More)
Unimolecular submersible nanomachines (USNs) bearing light-driven motors and fluorophores are synthesized. NMR experiments demonstrate that the rotation of the motor is not quenched by the fluorophore and that the motor behaves in the same manner as the corresponding motor without attached fluorophores. No photo or thermal decomposition is observed. Through(More)
Herein, we report the synthesis of a molecular clip with TTF side-walls and its binding behavior towards electron-deficient guests, namely the formation of macrocycle/molecular-clip supramolecular complexes in solution. Four different sets of external stimuli--the K(+)/[2.2.2]cryptand, NH(4) (+)/Et(3)N and (p-BrPh)(3)NSbCl(6)/Zn pairs, and heating/cooling(More)
We have observed the mixed-valence and radical cation dimer states of a glycoluril-based molecular clip with tetrathiafulvalene (TTF) sidewalls at low concentration (1 mM) at room temperature. This molecular clip has four consecutive anodic steps in its cyclic voltammogram, which suggests a sequential oxidation of these TTF sidewalls to generate species(More)
We have synthesized a new molecular switch-based on a macrocycle-clip complex-whose switching behavior not only can be controlled through the use of either K+-[2,2,2]cryptand or NH4+-Et3N systems but also provides color changes that are visible to the naked eye; consequently, this system operates as a two-input NOR functioning molecular logic gate.
Molecular machines are a key component in the vision of molecular nanotechnology and have the potential to transport molecular species and cargo on surfaces. The motion of such machines should be triggered remotely, ultimately allowing a large number of molecules to be propelled by a single source, with light being an attractive stimulus. Here, we report(More)
  • 1