Learn More
Dielectric spectroscopy (DS) is an important technique for scientific and technological investigations in various areas. DS sensitivity and operating frequency ranges are critical for many applications, including lab-on-chip development where sample volumes are small with a wide range of dynamic processes to probe. In this work, we present the design and(More)
We propose and demonstrate a simple, ultra sensitive radio frequency (RF) sensor to detect a single yeast cell and distinguish its viability in a microfluidic channel. On-chip interference is used to cancel background probing signals to improve sensor sensitivity. Individual viable and nonviable yeast cells (approximately 5.83 +/- 0.85 microm in diameter)(More)
We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor (Qeff ) of the sensor is as high as ∼3.8 × 10(6) with 200 μl of water samples. We(More)
This paper presents a highly reconfigurable, low-power, and compact directional coupler. The coupler uses varactors and novel active inductors to achieve wide tuning ranges of operating frequencies and coupling coefficients. The use of a low-pass circuit architecture with only two inductors minimizes chip area, power consumption, and noise. The coupler is(More)
A highly tunable and sensitive radio-frequency (RF) sensor is presented for the measurement of aqueous-solution dielectric properties. Two quadrature hybrids are utilized to achieve destructive interference that eliminates the probing signals at both measurement ports. As a result, weak signals of material-under-test (MUT) are elevated for high sensitivity(More)
Silicon microstrip line devices with 260 nm planar microfluidic channels are fabricated and used to investigate water dielectric saturation effects. Microwave scattering parameter measurements are conducted from 1 to 16 GHz under different uniform dc electric fields. When the applied dc field is increased to approximately 1 MV/cm, the measured transmission(More)
We show that simple radio-frequency (RF) interferometers can have slow-wave positive group delay (PGD) or negative group delay (NGD), as well as superluminal propagation (SP) regions, due to a destructive interference process. These properties are easily tunable, which makes RF interferometers unique among systems that have NGD and SP regimes. A two-stage(More)