Pingping Sun

Learn More
S-nitrosylation (SNO) is one of the most universal reversible post-translational modifications involved in many biological processes. Malfunction or dysregulation of SNO leads to a series of severe diseases, such as developmental abnormalities and various diseases. Therefore, the identification of SNO sites (SNOs) provides insights into disease progression(More)
The increasing use of carbon nanotubes (CNTs) in biomedical applications underlines the importance of its potential toxic effects to human health. In the present study, we first exposed PC12 cells, a commonly used in vitro model for neurotoxicity study, to two kinds of commercially available single-walled carbon nanotubes (SWCNTs), to investigate the effect(More)
Epitope prediction based on random peptide library screening has become a focus as a promising method in immunoinformatics research. Some novel software and web-based servers have been proposed in recent years and have succeeded in given test cases. However, since the number of available mimotopes with the relevant structure of template-target complex is(More)
Pupylation is one of the most important posttranslational modifications of proteins; accurate identification of pupylation sites will facilitate the understanding of the molecular mechanism of pupylation. Besides the conventional experimental approaches, computational prediction of pupylation sites is much desirable for their convenience and fast speed. In(More)
Identification of epitopes which invoke strong humoral responses is an essential issue in the field of immunology. Localizing epitopes by experimental methods is expensive in terms of time, cost, and effort; therefore, computational methods feature for its low cost and high speed was employed to predict B-cell epitopes. In this paper, we review the recent(More)
B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the(More)
Identification of epitopes which invokes strong humoral responses is an essential issue in the field of immunology. Various computational methods that have been developed based on the antigen structures and the mimotopes these years narrow the search for experimental validation. These methods can be divided into two categories: antigen structure-based(More)
The prediction of solvent accessibility could provide valuable clues for analyzing protein structure and functions, such as protein 3-Dimensional structure and B-cell epitope prediction. To fully decipher the protein-protein interaction process, an initial but crucial step is to calculate the protein solvent accessibility, especially when the tertiary(More)
Small molecule BH3 mimetics comprise a promising new chemotherapeutic strategy for treating relapsed or chemoresistant cancer. In this study, we investigated the cellular mechanism of action by which BM-1197, a Bcl-xL/Bcl-2 dual inhibitor, triggers apoptosis in a panel of colorectal cancer (CRC) lines. Using(More)
  • Vladimir Galvita, Georges Siddiqi, Pingping Sun, Alexis T Bell
  • 2010
The dehydrogenation of ethane to ethene on Sn-promoted Pt supported on calcined hydrotalcite, PtSn/ Mg(Al)O, was investigated with the aim of understanding the effects of Sn on the local environment of the dispersed Pt, the catalyst activity and selectivity for dehydrogenation, and the formation of coke. The origins of methane, the primary byproduct of(More)