Learn More
Two-dimensional (2D) semiconductor nanomaterials hold great promises for future electronics and optics. In this paper, a 2D nanosheets of ultrathin GaSe has been prepared by using mechanical cleavage and solvent exfoliation method. Single- and few-layer GaSe nanosheets are exfoliated on an SiO(2)/Si substrate and characterized by atomic force microscopy and(More)
The first GaS nanosheet-based photodetectors are demonstrated on both mechanically rigid and flexible substrates. Highly crystalline, exfoliated GaS nanosheets are promising for optoelectronics due to strong absorption in the UV-visible wavelength region. Photocurrent measurements of GaS nanosheet photodetectors made on SiO2/Si substrates and flexible(More)
Carrier doping of MoS2 nanoflakes was achieved by functional self-assembled monolayers (SAMs) with different dipole moments. The effect of SAMs on the charge transfer between the substrates and MoS2 nanoflakes was studied by Raman spectroscopy, field-effect transistor (FET) measurements, and Kelvin probe microscope (KFM). Raman data and FET results verified(More)
The back gate multilayer InSe FETs exhibit ultrahigh carrier mobilities, surpassing all the reported layer semiconductor based electronics with the same device configuration, which is achieved by the suppression of the carrier scattering from interfacial coulomb impurities or surface polar phonons at the interface of an oxidized dielectric substrate. The(More)
Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has(More)
Viable and general techniques that allow effective size control of triangular-shaped, single-crystal, monolayer h-BN domains grown by the CVD method, direct optical visualization of h-BN domains, and the cleaning of the h-BN surface to achieve reliable graphene device quality are reported for the first time. This study points to a critical role of the(More)
Dipeptide-polyoxometalates (POMs)-graphene oxide (GO) ternary hybrid is an excellent peroxidase-like mimic, exhibiting enhanced peroxidase-like activity compared to POMs alone. The hybrid was readily prepared through a reprecipitation method involving electrostatic encapsulation of H3PW12O40 (PW12) by cationic diphenylalanine (FF) peptide and coassembly of(More)
Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of(More)
Organic dye molecules possessing modulated optical absorption bandwidth and molecular structures can be utilized as sensitizing species for the enhancement of photodetector performance of semiconductor via photoinduced charge transfer mechanism. MoS2 photodetector were modified by drop-casting of methyl orange (MO), rhodamine 6G (R6G), and methylene blue(More)
Tuning and characterizing the interfacial structure of organic semiconductors on graphene is essential for graphene-based devices. Regulation of the supramolecular assembling structure of oligothiophenes on graphene by changing functional groups attached to the backbone of oligothiophenes is described and the assembling behavior is compared with that on the(More)